\begin{tabular}{|l|l|}
\hline
\multicolumn{1}{|c|}{[tex]$x$[/tex]} & [tex]$2.5 e^{-0.04 x}-0.2 x-1.2$[/tex] \\
\hline
Lower bound & 4 \\
\hline
Average of the bounds & 4.5 \\
\hline
Upper bound & 5 \\
\hline
\end{tabular}



Answer :

Let's evaluate the function [tex]\( f(x) = 2.5 e^{-0.04 x} - 0.2 x - 1.2 \)[/tex] at the specified points: the lower bound, the average of the bounds, and the upper bound.

### Lower Bound (4)

1. First, substitute [tex]\( x = 4 \)[/tex] into the function:
[tex]\[ f(4) = 2.5 e^{-0.04 \cdot 4} - 0.2 \cdot 4 - 1.2 \][/tex]

2. Calculate the value of the exponential part [tex]\( e^{-0.16} \)[/tex] and then evaluate the rest of the expression:
[tex]\[ f(4) = 2.5 e^{-0.16} - 0.8 - 1.2 \approx 0.130359472415528 \][/tex]

### Average of the Bounds (4.5)

1. Next, substitute [tex]\( x = 4.5 \)[/tex] into the function:
[tex]\[ f(4.5) = 2.5 e^{-0.04 \cdot 4.5} - 0.2 \cdot 4.5 - 1.2 \][/tex]

2. Calculate [tex]\( e^{-0.18} \)[/tex] and then evaluate the rest of the expression:
[tex]\[ f(4.5) = 2.5 e^{-0.18} - 0.9 - 1.2 \approx -0.0118244714718200 \][/tex]

### Upper Bound (5)

1. Finally, substitute [tex]\( x = 5 \)[/tex] into the function:
[tex]\[ f(5) = 2.5 e^{-0.04 \cdot 5} - 0.2 \cdot 5 - 1.2 \][/tex]

2. Calculate [tex]\( e^{-0.20} \)[/tex] and then evaluate the rest of the expression:
[tex]\[ f(5) = 2.5 e^{-0.20} - 1 - 1.2 \approx -0.153173117305045 \][/tex]

### Summary

Let's compile these results in the table:

[tex]\[ \begin{tabular}{|l|l|} \hline \multicolumn{1}{|c|}{x} & 2.5 e^{-0.04 x} - 0.2 x - 1.2 \\ \hline Lower bound (4) & 0.130359472415528 \\ \hline Average of the bounds (4.5) & -0.0118244714718200 \\ \hline Upper bound (5) & -0.153173117305045 \\ \hline \end{tabular} \][/tex]