Solve for [tex]x[/tex].

[tex]\cos 2x + \frac{1}{2} = 0[/tex]

A. [tex]\frac{\pi}{3} + 2\pi n ; \frac{2\pi}{3} + 2\pi n[/tex]

B. [tex]\frac{\pi}{6} + \pi n ; \frac{\pi}{3} + \pi n[/tex]

C. [tex]\frac{\pi}{3} + \pi n ; \frac{2\pi}{3} + \pi n[/tex]

D. [tex]\frac{\pi}{6} + 2\pi n ; \frac{\pi}{3} + 2\pi n[/tex]



Answer :

Let's solve the given trigonometric equation:
[tex]\[ \cos(2x) + \frac{1}{2} = 0 \][/tex]

First, isolate the cosine term:
[tex]\[ \cos(2x) = -\frac{1}{2} \][/tex]

We need to find the values of [tex]\(2x\)[/tex] where the cosine function is [tex]\(-\frac{1}{2}\)[/tex].

In the interval [tex]\([0, 2\pi]\)[/tex], the cosine function equals [tex]\(-\frac{1}{2}\)[/tex] at:
[tex]\[ 2x = \frac{2\pi}{3}, \frac{4\pi}{3} \][/tex]

Now, solve for [tex]\(x\)[/tex] by dividing both sides by 2:
[tex]\[ x = \frac{\frac{2\pi}{3}}{2} = \frac{\pi}{3} \][/tex]
[tex]\[ x = \frac{\frac{4\pi}{3}}{2} = \frac{2\pi}{3} \][/tex]

Since the cosine function is periodic with period [tex]\(2\pi\)[/tex], we must include all solutions that differ by integer multiples of the period of [tex]\(x\)[/tex], which is [tex]\(\pi\)[/tex]. Therefore, we write the general solutions:
[tex]\[ x = \frac{\pi}{3} + \pi n \quad \text{for integer } n \][/tex]
[tex]\[ x = \frac{2\pi}{3} + \pi n \quad \text{for integer } n \][/tex]

Thus, the complete solution set to the equation [tex]\(\cos(2x) + \frac{1}{2} = 0\)[/tex] is:
[tex]\[ x = \frac{\pi}{3} + \pi n \quad \text{and} \quad x = \frac{2\pi}{3} + \pi n \quad \text{where } n \in \mathbb{Z} \][/tex]