The equation for the thermal decomposition of sodium hydrogencarbonate is shown.

[tex]\[
2 NaHCO_3 \rightarrow Na_2CO_3 + H_2O + CO_2
\][/tex]

The [tex]$M_r$[/tex] of sodium hydrogencarbonate ([tex]$NaHCO_3$[/tex]) is 84.
The [tex]$M_r$[/tex] of sodium carbonate ([tex]$Na_2CO_3$[/tex]) is 106.

In an experiment, 2.1 g of sodium hydrogencarbonate is heated, but not all of it decomposes. All the carbon dioxide is collected and measured at room temperature and pressure. The total volume of carbon dioxide produced is [tex]$0.21 \, \text{dm}^3$[/tex].

The volume of 1 mole of a gas at room temperature and pressure is [tex]$24 \, \text{dm}^3$[/tex].

Which statement is correct?

A. The mass of sodium carbonate produced is 0.93 g.

B. The mass of sodium carbonate produced is 1.33 g.

C. The percentage yield of carbon dioxide is [tex]$10\%$[/tex].

D. The percentage yield of carbon dioxide is [tex]$35\%$[/tex].



Answer :

Sure, let's work through this step-by-step.

### Given Data:
1. Reaction:
[tex]\(2 \text{NaHCO}_3 \to \text{Na}_2\text{CO}_3 + \text{H}_2\text{O} + \text{CO}_2\)[/tex]

2. Molar masses:
- [tex]\(M_r \text{of NaHCO}_3 = 84 \, \text{g/mol}\)[/tex]
- [tex]\(M_r \text{of Na}_2\text{CO}_3 = 106 \, \text{g/mol}\)[/tex]

3. Experimental data:
- Initial mass of sodium hydrogencarbonate: [tex]\(2.1 \, \text{g}\)[/tex]
- Total volume of [tex]\( \text{CO}_2 \)[/tex] collected: [tex]\(0.21 \, \text{dm}^3\)[/tex]
- Molar volume at RTP (Room Temperature and Pressure): [tex]\(24 \, \text{dm}^3/\text{mol}\)[/tex]

### Step-by-Step Solution:

1. Calculate the moles of [tex]\( \text{NaHCO}_3 \)[/tex] used:
[tex]\[ \text{Moles of } \text{NaHCO}_3 = \frac{\text{Initial mass of NaHCO}_3}{M_r \text{ of NaHCO}_3} \][/tex]
[tex]\[ \text{Moles of } \text{NaHCO}_3 = \frac{2.1}{84} \approx 0.025 \, \text{mol} \][/tex]

2. Stoichiometry of the reaction:
- According to the balanced equation, [tex]\(2 \text{moles of NaHCO}_3\)[/tex] produce [tex]\(1 \text{mole of Na}_2\text{CO}_3\)[/tex], [tex]\(1 \text{mole of H}_2\text{O}\)[/tex], and [tex]\(1 \text{mole of CO}_2\)[/tex].
- So, [tex]\(0.025 \, \text{moles of NaHCO}_3\)[/tex] would produce:
[tex]\[ \text{Moles of } \text{CO}_2 = \frac{0.025}{2} = 0.0125 \, \text{mol} \][/tex]

3. Expected volume of [tex]\( \text{CO}_2 \)[/tex] collected:
[tex]\[ \text{Expected volume of } \text{CO}_2 = \text{Moles of } \text{CO}_2 \times \text{Molar volume at RTP} \][/tex]
[tex]\[ \text{Expected volume of } \text{CO}_2 = 0.0125 \times 24 = 0.3 \, \text{dm}^3 \][/tex]

4. Calculate the percentage yield of [tex]\( \text{CO}_2 \)[/tex]:
[tex]\[ \text{Percentage yield} = \left( \frac{\text{Actual volume of } \text{CO}_2}{\text{Expected volume of } \text{CO}_2} \right) \times 100 \][/tex]
[tex]\[ \text{Percentage yield} = \left( \frac{0.21}{0.3} \right) \times 100 = 70\% \][/tex]

5. Calculate the moles of [tex]\( \text{Na}_2\text{CO}_3 \)[/tex] produced:
- Each mole of [tex]\( \text{Na}_2\text{CO}_3 \)[/tex] corresponds to 1 mole of [tex]\( \text{CO}_2 \)[/tex] collected.
[tex]\[ \text{Moles of } \text{Na}_2\text{CO}_3 = 0.21 \, \text{dm}^3 \div 24 \, \text{dm}^3/\text{mol} = 0.00875 \, \text{mol} \][/tex]

6. Calculate the mass of [tex]\( \text{Na}_2\text{CO}_3 \)[/tex] produced:
[tex]\[ \text{Mass of Na}_2\text{CO}_3 = \text{Moles of Na}_2\text{CO}_3 \times M_r \text{ of Na}_2\text{CO}_3 \][/tex]
[tex]\[ \text{Mass of Na}_2\text{CO}_3 = 0.00875 \times 106 \approx 0.9275 \, \text{g} \][/tex]

### Conclusion:
- Therefore, the mass of sodium carbonate (Na[tex]\(_2\)[/tex]CO[tex]\(_3\)[/tex]) produced is approximately 0.93 grams.
- The percentage yield of carbon dioxide (CO[tex]\(_2\)[/tex]) is 70%.

Thus, the correct statement is:

A. The mass of sodium carbonate produced is 0.93 g.