What is the simplified base of the function [tex]f(x)=\frac{1}{4}(\sqrt[3]{108})^x[/tex]?

A. 3
B. [tex]3 \sqrt[3]{4}[/tex]
C. [tex]6 \sqrt[3]{3}[/tex]
D. 27



Answer :

To find the simplified base of the function [tex]\( f(x) = \frac{1}{4} (\sqrt[3]{108})^x \)[/tex], let's delve into the details.

First, we need to simplify the expression inside the cube root: [tex]\(\sqrt[3]{108}\)[/tex].

Note that [tex]\(108\)[/tex] can be decomposed into factors:
[tex]\[ 108 = 27 \times 4 \][/tex]
[tex]\[ 27 = 3^3 \][/tex]

Thus,
[tex]\[ 108 = 3^3 \times 4 \][/tex]

Taking the cube root of both sides, we get:
[tex]\[ \sqrt[3]{108} = \sqrt[3]{3^3 \times 4} \][/tex]
[tex]\[ \sqrt[3]{108} = \sqrt[3]{3^3} \times \sqrt[3]{4} \][/tex]
[tex]\[ \sqrt[3]{108} = 3 \times \sqrt[3]{4} \][/tex]

So, the simplified base can be written as:
[tex]\[ 3 \sqrt[3]{4} \][/tex]

Therefore, the valid answer among the given options is:
[tex]\[ 3 \sqrt[3]{4} \][/tex]