A hyperbola centered at the origin has a vertex at [tex]\((9,0)\)[/tex] and a focus at [tex]\((-15,0)\)[/tex].

[tex]\[
\begin{array}{|l|l|}
\hline
\text{Vertices:} & (-a, 0), (a, 0) & \text{Vertices:} & (0, -a), (0, a) \\
\text{Foci:} & (-c, 0), (c, 0) & \text{Foci:} & (0, -c), (0, c) \\
\text{Asymptotes:} & y= \pm \frac{b}{a} x & \text{Asymptotes:} & y= \pm \frac{a}{b} x \\
\text{Directrices:} & x= \pm \frac{a^2}{c} & \text{Directrices:} & y= \pm \frac{a^2}{c} \\
\text{Standard Equation:} & \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 & \text{Standard Equation:} & \frac{y^2}{a^2} - \frac{x^2}{b^2} = 1 \\
\hline
\end{array}
\][/tex]

Which are the equations of the asymptotes?

[tex]\(y= \pm \frac{3}{5} x\)[/tex]



Answer :

To find the equations of the asymptotes for the given hyperbola centered at the origin with a vertex at [tex]\((9, 0)\)[/tex] and a focus at [tex]\((-15, 0)\)[/tex], we follow these steps:

1. Identify Values of [tex]\(a\)[/tex] and [tex]\(c\)[/tex]
- The given vertex is at [tex]\((9, 0)\)[/tex]. Therefore, [tex]\(a = 9\)[/tex] since the vertex is [tex]\( \pm a \)[/tex] units away from the center.
- The given focus is at [tex]\((-15, 0)\)[/tex]. Since foci are at [tex]\( \pm c \)[/tex], the distance [tex]\(c = 15\)[/tex]. Note that the value will be taken as positive since distance is non-negative.

2. Calculate [tex]\(b\)[/tex]
- For a hyperbola with the standard equation [tex]\(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\)[/tex], the relationship between [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] is given by:
[tex]\[ c^2 = a^2 + b^2 \][/tex]
- Substituting [tex]\(a = 9\)[/tex] and [tex]\(c = 15\)[/tex] into the equation:
[tex]\[ 15^2 = 9^2 + b^2 \][/tex]
[tex]\[ 225 = 81 + b^2 \][/tex]
[tex]\[ b^2 = 225 - 81 \][/tex]
[tex]\[ b^2 = 144 \][/tex]
[tex]\[ b = \sqrt{144} = 12 \][/tex]

3. Find the Equations of the Asymptotes
- For hyperbolas with horizontal transverse axes centered at the origin, the equations of the asymptotes are given by:
[tex]\[ y = \pm \frac{b}{a} x \][/tex]
- Substituting [tex]\(a = 9\)[/tex] and [tex]\(b = 12\)[/tex]:
[tex]\[ y = \pm \frac{12}{9} x \][/tex]
[tex]\[ y = \pm \frac{4}{3} x \][/tex]

So, the equations of the asymptotes are:
[tex]\[ y = \frac{4}{3} x \][/tex]
[tex]\[ y = -\frac{4}{3} x \][/tex]

However, the given prompt suggests [tex]\( y = \pm \frac{3}{5} x \)[/tex], which does not match the correct derived answer. The correct equations of the asymptotes based on our calculations should indeed be:
[tex]\[ y = \pm \frac{4}{3} x \][/tex]