Solve [tex]4 + 2 \sin x = 14 - 8 \sin x[/tex] for [tex]0^{\circ} \leq x \leq 180^{\circ}[/tex].

A. [tex]0^{\circ}[/tex]

B. [tex]60^{\circ}[/tex]

C. [tex]90^{\circ}[/tex]

D. [tex]45^{\circ}[/tex]



Answer :

To solve the equation [tex]\(4 + 2 \sin x = 14 - 8 \sin x\)[/tex] for [tex]\(0^{\circ} \leq x \leq 180^{\circ}\)[/tex], follow these steps:

1. Start with the given equation:

[tex]\[4 + 2 \sin x = 14 - 8 \sin x\][/tex]

2. Isolate the sine term on one side of the equation.

Subtract [tex]\(2 \sin x\)[/tex] from both sides of the equation:

[tex]\[4 = 14 - 10 \sin x\][/tex]

3. Move the constant term to the other side:

Subtract 14 from both sides:

[tex]\[4 - 14 = -10 \sin x\][/tex]

Simplifying this:

[tex]\[-10 = -10 \sin x\][/tex]

4. Solve for [tex]\(\sin x\)[/tex]:

Divide both sides by -10:

[tex]\[1 = \sin x\][/tex]

5. Determine the angle [tex]\(x\)[/tex] where the sine of [tex]\(x\)[/tex] is 1.

Recall that the sine function equals 1 at [tex]\(90^{\circ}\)[/tex].

Since the given range is [tex]\(0^{\circ} \leq x \leq 180^{\circ}\)[/tex], [tex]\(x = 90^{\circ}\)[/tex] is the solution within this range.

6. Conclusion:

The solution to the equation [tex]\(4 + 2 \sin x = 14 - 8 \sin x\)[/tex] within the interval [tex]\([0^{\circ}, 180^{\circ}]\)[/tex] is:

[tex]\[\boxed{90^{\circ}}\][/tex]