Solve for [tex]x[/tex]:

[tex]\[ \cot x \sin x + \cot x = 0 \][/tex]

[tex]\[ \frac{\pi}{2} + n \pi, \frac{\pi}{2} + 2n \pi \][/tex]

[tex]\[ 0 + n \pi, \frac{3 \pi}{2} + 2n \pi \][/tex]

[tex]\[ 0 + n \pi, \frac{\pi}{2} + 2n \pi \][/tex]

[tex]\[ \frac{\pi}{2} + n \pi, \frac{3 \pi}{2} + 2n \pi \][/tex]



Answer :

Let's solve the given trigonometric equation step by step:

Given equation:
[tex]\[ \cot(x) \sin(x) + \cot(x) = 0 \][/tex]

First, recall the definition of the cotangent function:
[tex]\[ \cot(x) = \frac{\cos(x)}{\sin(x)} \][/tex]

Substitute this identity into the original equation:
[tex]\[ \left(\frac{\cos(x)}{\sin(x)}\right) \sin(x) + \frac{\cos(x)}{\sin(x)} = 0 \][/tex]

Simplify the equation:
[tex]\[ \cos(x) + \frac{\cos(x)}{\sin(x)} = 0 \][/tex]

Factor out [tex]\(\cos(x)\)[/tex] from the left-hand side:
[tex]\[ \cos(x) \left( 1 + \frac{1}{\sin(x)} \right) = 0 \][/tex]

The product of two factors is zero if and only if at least one of the factors is zero. Therefore, we set each factor to zero:

Case 1:
[tex]\[ \cos(x) = 0 \][/tex]

The cosine function is zero at:
[tex]\[ x = \frac{\pi}{2} + n\pi, \quad \text{where } n \text{ is an integer} \][/tex]

Case 2:
[tex]\[ 1 + \frac{1}{\sin(x)} = 0 \][/tex]

Solving for [tex]\(\sin(x)\)[/tex]:
[tex]\[ \frac{1}{\sin(x)} = -1 \][/tex]
[tex]\[ \sin(x) = -1 \][/tex]

The sine function is -1 at:
[tex]\[ x = \frac{3\pi}{2} + 2n\pi, \quad \text{where } n \text{ is an integer} \][/tex]

Now combine the solutions from both cases:

The solutions to the equation are:
[tex]\[ x = \frac{\pi}{2} + n\pi \quad \text{and} \quad x = \frac{3\pi}{2} + 2n\pi \quad \text{for integers } n \][/tex]