Solve for [tex]\( x \)[/tex]:

[tex]\[ \sin 2x + \frac{\sqrt{3}}{2} = 0 \][/tex]

A. [tex]\(\frac{2 \pi}{3} + 2 \pi n; \frac{5 \pi}{6} + 2 \pi n\)[/tex]

B. [tex]\(\frac{2 \pi}{3} + \pi n; \frac{5 \pi}{6} + \pi n\)[/tex]

C. [tex]\(\frac{\pi}{3} + \pi n; \frac{5 \pi}{3} + \pi n\)[/tex]

D. [tex]\(\frac{\pi}{3} + 2 \pi n; \frac{5 \pi}{3} + 2 \pi n\)[/tex]



Answer :

To solve the equation [tex]\(\sin 2x + \frac{\sqrt{3}}{2} = 0\)[/tex]:

1. Isolate the trigonometric function:
[tex]\[ \sin 2x = -\frac{\sqrt{3}}{2} \][/tex]

2. Determine the principal solutions:
The sine function takes the value [tex]\(-\frac{\sqrt{3}}{2}\)[/tex] at specific angles. We need to find [tex]\(2x\)[/tex] such that:
[tex]\[ \sin 2x = -\frac{\sqrt{3}}{2} \][/tex]
This occurs at:
[tex]\[ 2x = \frac{4\pi}{3} + 2k\pi \quad \text{and} \quad 2x = \frac{5\pi}{3} + 2k\pi \][/tex]
where [tex]\(k\)[/tex] is any integer.

3. Solve for [tex]\(x\)[/tex]:
Divide each equation by 2:
[tex]\[ x = \frac{2\pi}{3} + k\pi \quad \text{and} \quad x = \frac{5\pi}{6} + k\pi \][/tex]

4. Express the general solutions:
The general solutions for [tex]\(x\)[/tex] are:
[tex]\[ x = \frac{2\pi}{3} + k\pi \quad \text{and} \quad x = \frac{5\pi}{6} + k\pi \][/tex]
To match the required format [tex]\(\frac{a\pi}{b} + c\pi n\)[/tex]:

[tex]\[ x = \frac{2\pi}{3} + \pi n \quad \text{and} \quad x = \frac{5\pi}{6} + \pi n \][/tex]

5. Select the appropriate format from the given options:
Comparing the solutions:
- The first term matches [tex]\(\frac{2\pi}{3}\)[/tex] plus a multiple of [tex]\(\pi\)[/tex].
- The second term matches [tex]\(\frac{5\pi}{6}\)[/tex] plus a multiple of [tex]\(\pi\)[/tex].

The correct answer is:
[tex]\[ \frac{2\pi}{3} + \pi n \quad ; \quad \frac{5\pi}{6} + \pi n \][/tex]

Thus, the correct option is:
- [tex]\(\frac{2\pi}{3} + \pi n \ ; \ \frac{5\pi}{6} + \pi n\)[/tex]