What basic trigonometric identity would you use to verify that [tex]\frac{\sin ^2 x+\cos ^2 x}{\cos x}=\sec x[/tex]?

A. [tex]\sin x=\frac{1}{\csc x}[/tex]
B. [tex]1+\cot ^2 x=\csc ^2 x[/tex]
C. [tex]\cos ^2 x+\sin ^2 x=1[/tex]
D. [tex]\cos x=\frac{1}{\sec x}[/tex]



Answer :

To verify the trigonometric identity [tex]\(\frac{\sin^2 x + \cos^2 x}{\cos x} = \sec x\)[/tex], we can use the Pythagorean identity. The Pythagorean identity in trigonometry states:

[tex]\[ \sin^2 x + \cos^2 x = 1 \][/tex]

Here's a step-by-step verification of the given identity using this basic trigonometric identity:

1. Start with the left-hand side of the given identity:
[tex]\[ \frac{\sin^2 x + \cos^2 x}{\cos x} \][/tex]

2. Substitute the Pythagorean identity [tex]\(\sin^2 x + \cos^2 x = 1\)[/tex] into the expression:
[tex]\[ \frac{1}{\cos x} \][/tex]

3. Recognize that [tex]\(\frac{1}{\cos x}\)[/tex] is the definition of [tex]\(\sec x\)[/tex] (secant of x):
[tex]\[ \sec x \][/tex]

4. Therefore, the left-hand side simplifies to:
[tex]\[ \sec x \][/tex]

This shows that the left-hand side is equal to the right-hand side. Hence, the identity [tex]\(\frac{\sin^2 x + \cos^2 x}{\cos x} = \sec x\)[/tex] is verified.

Thus, [tex]\(\cos^2 x + \sin^2 x = 1\)[/tex] is the basic trigonometric identity used to verify the given equation.