Suppose that the functions [tex]g[/tex] and [tex]h[/tex] are defined as follows:
[tex]\[
\begin{array}{l}
g(x) = -7 + 2x^2 \\
h(x) = 8 - 5x
\end{array}
\][/tex]

(a) Find [tex]\(\left(\frac{g}{h}\right)(3)\)[/tex]

(b) Find all values that are NOT in the domain of [tex]\(\frac{g}{h}\)[/tex].

If there is more than one value, separate them with commas.

(a) [tex]\(\left(\frac{g}{h}\right)(3)\)[/tex] = [tex]\(\square\)[/tex]

(b) Value(s) that are NOT in the domain of [tex]\(\frac{g}{h}\)[/tex]:



Answer :

Certainly! Let's break this problem down step-by-step.

### Part (a): Find [tex]\(\left(\frac{g}{h}\right)(3)\)[/tex]

1. Define the functions [tex]\(g(x)\)[/tex] and [tex]\(h(x)\)[/tex]:
[tex]\[ g(x) = -7 + 2x^2 \][/tex]
[tex]\[ h(x) = 8 - 5x \][/tex]

2. Evaluate [tex]\(g(3)\)[/tex]:
[tex]\[ g(3) = -7 + 2(3)^2 = -7 + 2 \cdot 9 = -7 + 18 = 11 \][/tex]

3. Evaluate [tex]\(h(3)\)[/tex]:
[tex]\[ h(3) = 8 - 5(3) = 8 - 15 = -7 \][/tex]

4. Calculate [tex]\(\left(\frac{g}{h}\right)(3)\)[/tex]:
[tex]\[ \left(\frac{g}{h}\right)(3) = \frac{g(3)}{h(3)} = \frac{11}{-7} = -\frac{11}{7} \approx -1.5714285714285714 \][/tex]

So, [tex]\(\left(\frac{g}{h}\right)(3) = -1.5714285714285714\)[/tex].

### Part (b): Find all values that are NOT in the domain of [tex]\(\frac{g}{h}\)[/tex]

For [tex]\(\frac{g}{h}\)[/tex] to be defined, [tex]\(h(x)\)[/tex] must not be zero because division by zero is undefined.

1. Find when [tex]\(h(x) = 0\)[/tex]:
[tex]\[ 8 - 5x = 0 \][/tex]
Solving for [tex]\(x\)[/tex]:
[tex]\[ 5x = 8 \][/tex]
[tex]\[ x = \frac{8}{5} \][/tex]

This means that the function [tex]\(\frac{g}{h}\)[/tex] is not defined when [tex]\(x = \frac{8}{5}\)[/tex].

So, the value that is NOT in the domain of [tex]\(\frac{g}{h}\)[/tex] is:
[tex]\[ \frac{8}{5} \][/tex]

### Final Answers

(a) [tex]\(\left(\frac{g}{h}\right)(3) = -1.5714285714285714\)[/tex]

(b) Value(s) that are NOT in the domain of [tex]\(\frac{g}{h}\)[/tex]: [tex]\(\frac{8}{5}\)[/tex]