To determine the correctly sorted order of the fractions, let’s start by examining the given values that we need to arrange from smallest to greatest:
Given fractions:
[tex]\[ \frac{2}{3}, \frac{2}{5}, \frac{3}{10} \][/tex]
First, we can compare the given fractions by converting them to decimals:
1. [tex]\[\frac{2}{3} \approx 0.6667\][/tex]
2. [tex]\[\frac{2}{5} = 0.4\][/tex]
3. [tex]\[\frac{3}{10} = 0.3\][/tex]
Now, arrange these decimals in ascending order:
[tex]\[0.3, 0.4, 0.6667\][/tex]
Converting these decimals back to fractions, we get the following sorted order:
[tex]\[ \frac{3}{10}, \frac{2}{5}, \frac{2}{3} \][/tex]
Now, let's look at the provided options and see which matches the sorted order:
A. [tex]\[\frac{3}{10}, \frac{2}{5}, \frac{2}{3}\][/tex]
B. [tex]\[2, \underline{2}, \underline{3}\][/tex]
C. [tex]\[3, 2, 2\][/tex]
D. [tex]\[\frac{2}{5}, \frac{3}{10}, \frac{2}{3}\][/tex]
From the options provided, it's clear that Option A matches our sorted order:
[tex]\[ \frac{3}{10}, \frac{2}{5}, \frac{2}{3} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{1} \][/tex]