Answer :

To solve the system of linear equations

[tex]\[ \left\{ \begin{array}{l} 2x - y = 11 \\ x + 3y = -5 \end{array} \right. \][/tex]

we can follow these steps:

1. Isolate one variable in one of the equations:

Take the first equation: [tex]\( 2x - y = 11 \)[/tex].

Solve for [tex]\( y \)[/tex]:

[tex]\[ y = 2x - 11 \][/tex]

2. Substitute this expression into the second equation:

Now we substitute [tex]\( y = 2x - 11 \)[/tex] into the second equation [tex]\( x + 3y = -5 \)[/tex]:

[tex]\[ x + 3(2x - 11) = -5 \][/tex]

3. Solve for [tex]\( x \)[/tex]:

Simplify the equation:

[tex]\[ x + 6x - 33 = -5 \][/tex]

Combine like terms:

[tex]\[ 7x - 33 = -5 \][/tex]

Add 33 to both sides:

[tex]\[ 7x = 28 \][/tex]

Divide by 7:

[tex]\[ x = 4 \][/tex]

4. Substitute [tex]\( x \)[/tex] back into the expression for [tex]\( y \)[/tex]:

We previously found [tex]\( y = 2x - 11 \)[/tex]. Now substitute [tex]\( x = 4 \)[/tex]:

[tex]\[ y = 2(4) - 11 \][/tex]

Simplify:

[tex]\[ y = 8 - 11 \][/tex]

[tex]\[ y = -3 \][/tex]

Therefore, the value of [tex]\( y \)[/tex] is [tex]\( -3 \)[/tex].