(a) Given that [tex]\frac{\sqrt[3]{xy}(zy)^2}{(xz)^{-3}\sqrt{z}}=x^a y^b z^c[/tex], find the exact values of the constants [tex]a[/tex], [tex]b[/tex], and [tex]c[/tex].



Answer :

Let's break down the given expression and simplify it step by step to find the constants [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex].

The given expression is:
[tex]\[ \frac{\sqrt[3]{xy}(zy)^2}{(xz)^{-3}\sqrt{z}} \][/tex]

First, let's work with the numerator:
[tex]\[ \sqrt[3]{xy} \cdot (zy)^2 \][/tex]

This can be rewritten as:
[tex]\[ (xy)^{1/3} \cdot (zy)^2 \][/tex]

Next, we can break this down further:
[tex]\[ (xy)^{1/3} = x^{1/3} y^{1/3} \][/tex]
[tex]\[ (zy)^2 = z^2 y^2 \][/tex]

So the numerator becomes:
[tex]\[ x^{1/3} y^{1/3} \cdot z^2 y^2 = x^{1/3} \cdot y^{1/3 + 2} \cdot z^2 = x^{1/3} \cdot y^{7/3} \cdot z^2 \][/tex]

Now, let's work with the denominator:
[tex]\[ (xz)^{-3} \cdot \sqrt{z} \][/tex]

This can be rewritten as:
[tex]\[ (xz)^{-3} = x^{-3} z^{-3} \][/tex]
[tex]\[ \sqrt{z} = z^{1/2} \][/tex]

So the denominator becomes:
[tex]\[ x^{-3} z^{-3} \cdot z^{1/2} = x^{-3} \cdot z^{-3 + 1/2} = x^{-3} \cdot z^{-5/2} \][/tex]

Now, we can put the numerator and denominator together:
[tex]\[ \frac{x^{1/3} y^{7/3} z^2}{x^{-3} z^{-5/2}} \][/tex]

This can be simplified by dividing the corresponding powers:
[tex]\[ x^{1/3 - (-3)} \cdot y^{7/3} \cdot z^{2 - (-5/2)} = x^{1/3 + 3} \cdot y^{7/3} \cdot z^{2 + 5/2} \][/tex]

Simplify the exponents:
[tex]\[ x^{1/3 + 9/3} \cdot y^{7/3} \cdot z^{4/2 + 5/2} = x^{10/3} \cdot y^{7/3} \cdot z^{9/2} \][/tex]

Finally, notice that:
[tex]\[ x^{10/3} \cdot y^{7/3} \cdot z^{9/2} \][/tex]

We can read off the constants [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
[tex]\[ a = 10/3, \quad b = 7/3, \quad c = 9/2 \][/tex]

Given the constants:
[tex]\[ \boxed{a = 10/3}, \boxed{b = 7/3}, \boxed{c = 9/2} \][/tex]