Answered

Simplify.

[tex]\[ \left(-3 y^2 z^{-3}\right)^4 \][/tex]

Write your answer using only positive exponents.



Answer :

To simplify the expression [tex]\(\left(-3 y^2 z^{-3}\right)^4\)[/tex] and write the result using only positive exponents, follow these steps:

1. Distribute the exponent to each factor inside the parentheses:

The given expression is [tex]\(\left(-3 y^2 z^{-3}\right)^4\)[/tex]. We need to raise each part of the product to the power of 4:

[tex]\[ \left(-3 y^2 z^{-3}\right)^4 = (-3)^4 (y^2)^4 (z^{-3})^4 \][/tex]

2. Calculate each part separately:

- [tex]\((-3)^4\)[/tex]:
[tex]\[ (-3)^4 = (-3) \times (-3) \times (-3) \times (-3) = 81 \][/tex]

- [tex]\((y^2)^4\)[/tex]:
[tex]\[ (y^2)^4 = y^{2 \times 4} = y^8 \][/tex]

- [tex]\((z^{-3})^4\)[/tex]:
[tex]\[ (z^{-3})^4 = z^{-3 \times 4} = z^{-12} \][/tex]

3. Combine the results:

Now, combine the results from the separate parts:

[tex]\[ (-3)^4 (y^2)^4 (z^{-3})^4 = 81 y^8 z^{-12} \][/tex]

4. Write the final answer using only positive exponents:

The term [tex]\(z^{-12}\)[/tex] has a negative exponent. To convert it to a positive exponent, we can write it as a reciprocal:

[tex]\[ z^{-12} = \frac{1}{z^{12}} \][/tex]

Therefore, the final expression using only positive exponents is:

[tex]\[ 81 y^8 z^{-12} = 81 y^8 \cdot \frac{1}{z^{12}} = \frac{81 y^8}{z^{12}} \][/tex]

Thus, the simplified expression using only positive exponents is:

[tex]\[ \boxed{\frac{81 y^8}{z^{12}}} \][/tex]