Answer :

To simplify the expression [tex]\(\left(x+\frac{1}{x}\right)^2 + \left(x-\frac{1}{x}\right)^2\)[/tex], follow these steps:

1. Expand each squared term separately:

[tex]\(\left(x+\frac{1}{x}\right)^2\)[/tex]:

[tex]\[ \left(x+\frac{1}{x}\right)^2 = x^2 + 2 \cdot x \cdot \frac{1}{x} + \left(\frac{1}{x}\right)^2 = x^2 + 2 + \frac{1}{x^2} \][/tex]

[tex]\(\left(x-\frac{1}{x}\right)^2\)[/tex]:

[tex]\[ \left(x-\frac{1}{x}\right)^2 = x^2 - 2 \cdot x \cdot \frac{1}{x} + \left(\frac{1}{x}\right)^2 = x^2 - 2 + \frac{1}{x^2} \][/tex]

2. Add the expanded terms together:

[tex]\[ \left(x+\frac{1}{x}\right)^2 + \left(x-\frac{1}{x}\right)^2 = \left(x^2 + 2 + \frac{1}{x^2}\right) + \left(x^2 - 2 + \frac{1}{x^2}\right) \][/tex]

3. Combine like terms:

[tex]\[ \left(x^2 + 2 + \frac{1}{x^2}\right) + \left(x^2 - 2 + \frac{1}{x^2}\right) = x^2 + x^2 + \frac{1}{x^2} + \frac{1}{x^2} + 2 - 2 \][/tex]

Simplifying further:

[tex]\[ = 2x^2 + \frac{2}{x^2} \][/tex]

4. Factor out the common term:

[tex]\[ = 2 \left(x^2 + \frac{1}{x^2}\right) \][/tex]

Thus, the simplified expression for [tex]\(\left(x+\frac{1}{x}\right)^2 + \left(x-\frac{1}{x}\right)^2\)[/tex] is:

[tex]\[ \boxed{\frac{2(x^4 + 1)}{x^2}} \][/tex]