\begin{tabular}{|c|c|}
\hline
[tex]$y$[/tex] & Probability \\
\hline
10 & 0.10 \\
\hline
20 & 0.25 \\
\hline
30 & 0.05 \\
\hline
40 & 0.30 \\
\hline
50 & 0.20 \\
\hline
60 & 0.10 \\
\hline
\end{tabular}

What is the expected value of [tex]$y$[/tex]?

A. 25.0

B. 35.0



Answer :

To find the expected value of the random variable represented by [tex]\( y \)[/tex] with the given probabilities, follow these steps:

1. List the values and their corresponding probabilities:

[tex]\[ \begin{array}{c|c} y & \text{Probability} \\ \hline 10 & 0.10 \\ 20 & 0.25 \\ 30 & 0.05 \\ 40 & 0.30 \\ 50 & 0.20 \\ 60 & 0.10 \\ \end{array} \][/tex]

2. Calculate the contribution of each value to the expected value:

- Multiply each [tex]\( y \)[/tex] value by its corresponding probability.
[tex]\[ 10 \times 0.10 = 1.0 \][/tex]
[tex]\[ 20 \times 0.25 = 5.0 \][/tex]
[tex]\[ 30 \times 0.05 = 1.5 \][/tex]
[tex]\[ 40 \times 0.30 = 12.0 \][/tex]
[tex]\[ 50 \times 0.20 = 10.0 \][/tex]
[tex]\[ 60 \times 0.10 = 6.0 \][/tex]

3. Sum these contributions to get the expected value:

[tex]\[ 1.0 + 5.0 + 1.5 + 12.0 + 10.0 + 6.0 = 35.5 \][/tex]

Therefore, the expected value of the random variable [tex]\( y \)[/tex] is:

[tex]\[ \boxed{35.5} \][/tex]