Let's simplify the expression [tex]\(-a(5a - 9)\)[/tex] step by step.
1. Initial Expression:
[tex]\[
-a(5a - 9)
\][/tex]
2. Distribute the [tex]\( -a \)[/tex] across the terms within the parenthesis:
[tex]\[
-a \cdot 5a + (-a) \cdot (-9)
\][/tex]
3. Multiply each term separately:
- The first term: [tex]\( -a \cdot 5a = -5a^2 \)[/tex]
- The second term: [tex]\( (-a) \cdot (-9) = 9a \)[/tex]
4. Combine these results into a single expression:
[tex]\[
-5a^2 + 9a
\][/tex]
5. Express the simplified expression clearly:
[tex]\[
9a - 5a^2
\][/tex]
Therefore, the original expression [tex]\(-a(5a - 9)\)[/tex] simplifies to [tex]\( 9a - 5a^2 \)[/tex].
Final result:
[tex]\[
-a(5a - 9) = 9a - 5a^2
\][/tex]