Answer :

Let's solve the expression for the function [tex]\( f(x) \)[/tex]:

[tex]\[ f(x) = \sqrt{x^2 - 3x + 2} + \frac{1}{\sqrt{3 + 2x - x^2}} \][/tex]

1. Simplifying the Functions inside the Square Roots:

First, let's simplify the expressions inside the square roots.

For the first part:
[tex]\[ \sqrt{x^2 - 3x + 2} \][/tex]

We need to factorize [tex]\( x^2 - 3x + 2 \)[/tex].

[tex]\[ x^2 - 3x + 2 = (x-1)(x-2) \][/tex]

So,
[tex]\[ \sqrt{x^2 - 3x + 2} = \sqrt{(x-1)(x-2)} \][/tex]

2. Simplifying the Denominator inside the Second Square Root:

For the second part:
[tex]\[ \frac{1}{\sqrt{3 + 2x - x^2}} \][/tex]

We need to factorize [tex]\( 3 + 2x - x^2 \)[/tex].

[tex]\[ 3 + 2x - x^2 = -(x^2 - 2x - 3) \][/tex]

Next, we factorize [tex]\( x^2 - 2x - 3 \)[/tex].

[tex]\[ x^2 - 2x - 3 = (x-3)(x+1) \][/tex]

Therefore,
[tex]\[ 3 + 2x - x^2 = -(x-3)(x+1) \][/tex]

So,
[tex]\[ \sqrt{3 + 2x - x^2} = \sqrt{-(x-3)(x+1)} = i \sqrt{(x-3)(x+1)} \][/tex]

Thus, the second term becomes:
[tex]\[ \frac{1}{\sqrt{3 + 2x - x^2}} = \frac{1}{i \sqrt{(x-3)(x+1)}} = -\frac{i}{\sqrt{(x-3)(x+1)}} \][/tex]

3. Combining the Two Parts:

Thus, our function [tex]\( f(x) \)[/tex] is:

[tex]\[ f(x) = \sqrt{(x-1)(x-2)} - \frac{i}{\sqrt{(x-3)(x+1)}} \][/tex]

To conclude, the function [tex]\( f(x) \)[/tex] we have simplified to:

[tex]\[ f(x) = \sqrt{x^2 - 3x + 2} + \frac{1}{\sqrt{3 + 2x - x^2}} \][/tex]

This is the detailed breakdown of the function.