What is the solution to this system of linear equations?

[tex]\[
\begin{array}{l}
x + y = 4 \\
x - y = 6
\end{array}
\][/tex]

A. [tex]$(4, 6)$[/tex]
B. [tex]$(6, 4)$[/tex]
C. [tex]$(5, -1)$[/tex]
D. [tex]$(-1, 5)$[/tex]



Answer :

Of course! Let's solve the system of linear equations step-by-step to determine the correct solution from the given options.

We have the system of equations:
1. [tex]\( x + y = 4 \)[/tex]
2. [tex]\( x - y = 6 \)[/tex]

### Step 1: Add the equations

First, we will add the two equations together to eliminate [tex]\( y \)[/tex]:

[tex]\[ (x + y) + (x - y) = 4 + 6 \][/tex]

Simplify the left side:
[tex]\[ x + y + x - y = 10 \][/tex]
[tex]\[ 2x = 10 \][/tex]

### Step 2: Solve for [tex]\( x \)[/tex]

Divide both sides by 2:
[tex]\[ x = \frac{10}{2} \][/tex]
[tex]\[ x = 5 \][/tex]

### Step 3: Substitute [tex]\( x \)[/tex] back into one of the original equations to solve for [tex]\( y \)[/tex]

We can use the first equation [tex]\( x + y = 4 \)[/tex]:

[tex]\[ 5 + y = 4 \][/tex]

Subtract 5 from both sides:
[tex]\[ y = 4 - 5 \][/tex]
[tex]\[ y = -1 \][/tex]

### Conclusion:

The solution to the system of equations is [tex]\( x = 5 \)[/tex] and [tex]\( y = -1 \)[/tex]. Thus, the solution is [tex]\( (5, -1) \)[/tex].

### Verify with given options:

The correct option is:
- [tex]\( (5, -1) \)[/tex]