Question 4 of 20:

Simplify the expression [tex] \frac{r^{-4} s^5}{r^2 s} [/tex].

A. [tex] \frac{s^4}{r^2} [/tex]
B. [tex] r^{-6} s^6 [/tex]
C. [tex] \frac{s^4}{r^6} [/tex]
D. [tex] \frac{s^6}{r^6} [/tex]



Answer :

To simplify the given expression [tex]\(\frac{r^{-4} s^5}{r^2 s}\)[/tex], we can use the laws of exponents.

Starting with the expression:
[tex]\[ \frac{r^{-4} s^5}{r^2 s} \][/tex]

1. Separate the expression into parts involving [tex]\(r\)[/tex] and [tex]\(s\)[/tex] respectively:

[tex]\[ \frac{r^{-4}}{r^2} \cdot \frac{s^5}{s} \][/tex]

2. Simplify the expression involving [tex]\(r\)[/tex]:

When dividing exponents with the same base, subtract the exponents:

[tex]\[ \frac{r^{-4}}{r^2} = r^{-4 - 2} = r^{-6} \][/tex]

3. Simplify the expression involving [tex]\(s\)[/tex]:

Similarly, for the [tex]\(s\)[/tex] terms:

[tex]\[ \frac{s^5}{s} = s^{5 - 1} = s^4 \][/tex]

4. Combine the simplified parts:

[tex]\[ r^{-6} \cdot s^4 \][/tex]

5. Express [tex]\(r^{-6}\)[/tex] as a positive exponent:

[tex]\[ r^{-6} = \frac{1}{r^6} \][/tex]

6. Combine [tex]\(s^4\)[/tex] with [tex]\(\frac{1}{r^6}\)[/tex]:

[tex]\[ r^{-6} \cdot s^4 = \frac{s^4}{r^6} \][/tex]

Therefore, the simplified expression is:
[tex]\[ \frac{s^4}{r^6} \][/tex]

The correct answer is option C:
[tex]\[ \boxed{\frac{s^4}{r^6}} \][/tex]