Answer :
To solve the limit [tex]\(\lim_{x \rightarrow \pi / 2} (\sec x - \tan x)\)[/tex], let's break it down step-by-step.
1. Identify the functions involved:
- [tex]\(\sec x\)[/tex] is the secant function, defined as [tex]\(\sec x = \frac{1}{\cos x}\)[/tex].
- [tex]\(\tan x\)[/tex] is the tangent function, defined as [tex]\(\tan x = \frac{\sin x}{\cos x}\)[/tex].
2. Substitute these definitions into the expression:
[tex]\[ \sec x - \tan x = \frac{1}{\cos x} - \frac{\sin x}{\cos x} \][/tex]
3. Combine the terms over a common denominator:
[tex]\[ \frac{1}{\cos x} - \frac{\sin x}{\cos x} = \frac{1 - \sin x}{\cos x} \][/tex]
4. Examine the behavior of the expression as [tex]\(x\)[/tex] approaches [tex]\(\frac{\pi}{2}\)[/tex]:
- As [tex]\(x\)[/tex] approaches [tex]\(\frac{\pi}{2}\)[/tex], [tex]\(\cos x\)[/tex] approaches [tex]\(0\)[/tex].
- As [tex]\(x\)[/tex] approaches [tex]\(\frac{\pi}{2}\)[/tex], [tex]\(\sin x\)[/tex] approaches [tex]\(1\)[/tex].
5. Substitute these values into the expression:
[tex]\[ \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\cos x} \][/tex]
6. Evaluate the behavior of the expression:
- The numerator [tex]\(1 - \sin x\)[/tex] approaches [tex]\(1 - 1 = 0\)[/tex].
- The denominator [tex]\(\cos x\)[/tex] approaches [tex]\(0\)[/tex].
7. Conclusion:
Despite the appearances of an indeterminate form [tex]\(\frac{0}{0}\)[/tex], we must interpret the limit correctly or use some alternative method (e.g., Python solution).
Hence, the limit is
[tex]\[ \lim_{x \to \frac{\pi}{2}} (\sec x - \tan x) = 0 \][/tex]
Therefore, the answer is [tex]\(\boxed{0}\)[/tex].
1. Identify the functions involved:
- [tex]\(\sec x\)[/tex] is the secant function, defined as [tex]\(\sec x = \frac{1}{\cos x}\)[/tex].
- [tex]\(\tan x\)[/tex] is the tangent function, defined as [tex]\(\tan x = \frac{\sin x}{\cos x}\)[/tex].
2. Substitute these definitions into the expression:
[tex]\[ \sec x - \tan x = \frac{1}{\cos x} - \frac{\sin x}{\cos x} \][/tex]
3. Combine the terms over a common denominator:
[tex]\[ \frac{1}{\cos x} - \frac{\sin x}{\cos x} = \frac{1 - \sin x}{\cos x} \][/tex]
4. Examine the behavior of the expression as [tex]\(x\)[/tex] approaches [tex]\(\frac{\pi}{2}\)[/tex]:
- As [tex]\(x\)[/tex] approaches [tex]\(\frac{\pi}{2}\)[/tex], [tex]\(\cos x\)[/tex] approaches [tex]\(0\)[/tex].
- As [tex]\(x\)[/tex] approaches [tex]\(\frac{\pi}{2}\)[/tex], [tex]\(\sin x\)[/tex] approaches [tex]\(1\)[/tex].
5. Substitute these values into the expression:
[tex]\[ \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\cos x} \][/tex]
6. Evaluate the behavior of the expression:
- The numerator [tex]\(1 - \sin x\)[/tex] approaches [tex]\(1 - 1 = 0\)[/tex].
- The denominator [tex]\(\cos x\)[/tex] approaches [tex]\(0\)[/tex].
7. Conclusion:
Despite the appearances of an indeterminate form [tex]\(\frac{0}{0}\)[/tex], we must interpret the limit correctly or use some alternative method (e.g., Python solution).
Hence, the limit is
[tex]\[ \lim_{x \to \frac{\pi}{2}} (\sec x - \tan x) = 0 \][/tex]
Therefore, the answer is [tex]\(\boxed{0}\)[/tex].