Find all values of [tex]$y$[/tex] in the equation [tex$|-9y| = 27$[/tex].

A. No solution
B. [tex][tex]$y = 3$[/tex][/tex] and [tex$y = -3$[/tex]
C. [tex][tex]$y = -3$[/tex][/tex]
D. [tex]$y = 3$[/tex]



Answer :

To solve the equation [tex]\( |-9y| = 27 \)[/tex], let's go through the steps involved.

1. Understanding Absolute Value:
The absolute value of a number, defined as [tex]\( |x| \)[/tex], is the distance of [tex]\( x \)[/tex] from zero on the number line regardless of direction. For any real number [tex]\( x \)[/tex], [tex]\( |x| = x \)[/tex] if [tex]\( x \geq 0 \)[/tex] and [tex]\( |x| = -x \)[/tex] if [tex]\( x < 0 \)[/tex].

2. Set Up the Equation:
The equation given is [tex]\( |-9y| = 27 \)[/tex]. This means that the expression inside the absolute value, [tex]\( -9y \)[/tex], should be evaluated for both its positive and negative possibilities:
[tex]\[ -9y = 27 \][/tex]
and
[tex]\[ -9y = -27 \][/tex]

3. Solve Each Case Separately:

- Case 1: [tex]\( -9y = 27 \)[/tex]
[tex]\[ -9y = 27 \][/tex]
To solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{27}{-9} \][/tex]
[tex]\[ y = -3 \][/tex]

- Case 2: [tex]\( -9y = -27 \)[/tex]
[tex]\[ -9y = -27 \][/tex]
To solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{-27}{-9} \][/tex]
[tex]\[ y = 3 \][/tex]

4. List Both Solutions:
The solutions to the equation [tex]\( |-9y| = 27 \)[/tex] are [tex]\( y = -3 \)[/tex] and [tex]\( y = 3 \)[/tex].

Therefore, the correct choice is [tex]\( y = -3 \)[/tex] and [tex]\( y = 3 \)[/tex].

So the correct answer is:
[tex]\[ y = 3 \text{ and } -3 \][/tex]