Select the correct answer.

Which of the following is equal to the expression below?
[tex] (160 \cdot 243)^{\frac{1}{5}} [/tex]

A. [tex]5 \sqrt[5]{5}[/tex]
B. 96
C. [tex]6 \sqrt[5]{5}[/tex]
D. 80



Answer :

To solve the expression [tex]\((160 \cdot 243)^{\frac{1}{5}}\)[/tex], we need to find the fifth root of the product of 160 and 243.

First, let's combine the numbers inside the parentheses:

[tex]\[ 160 \cdot 243 \][/tex]

Next, we take the fifth root of the result:

[tex]\[ (160 \cdot 243)^{\frac{1}{5}} \][/tex]

Now, we arrive at the numerical value of this expression:

[tex]\[ 8.27837796876729 \][/tex]

Given the options:

A. [tex]\(5 \sqrt[5]{5}\)[/tex]

B. 96

C. [tex]\(6 \sqrt[5]{5}\)[/tex]

D. 80

None of the exact forms of the root provided in options A, B, and D match our numerical value. Let's see if option C is indeed the closest equivalent.

Checking option C –

[tex]\[ 6 \cdot \sqrt[5]{5} \][/tex]

Using the numerical value of our previously calculated root, [tex]\(\sqrt[5]{5}\)[/tex] would not accurately give the exact number. Thus, given our precise calculation, none of these values perfectly match.

Therefore, the correct choice based on the closest numerical value is:

[tex]\[ 6 \sqrt[5]{5} \approx 8.278 \][/tex]

So the correct answer is:

[tex]\[ C. 6 \sqrt[5]{5} \][/tex]