What is the slope of the line that contains the points [tex]\((2, -8)\)[/tex] and [tex]\((-4, 4)\)[/tex]?

A. 2

B. [tex]\(\frac{1}{2}\)[/tex]

C. [tex]\(-\frac{1}{2}\)[/tex]

D. -2



Answer :

To find the slope of the line that contains the points [tex]\((2, -8)\)[/tex] and [tex]\((-4, 4)\)[/tex], you can use the slope formula. The slope [tex]\( m \)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Plugging in the coordinates of the given points:

- [tex]\((x_1, y_1) = (2, -8)\)[/tex]
- [tex]\((x_2, y_2) = (-4, 4)\)[/tex]

Substituting these values into the formula:

[tex]\[ m = \frac{4 - (-8)}{-4 - 2} \][/tex]

Simplify the numerator and the denominator:

[tex]\[ m = \frac{4 + 8}{-4 - 2} = \frac{12}{-6} \][/tex]

Then, simplify the fraction:

[tex]\[ m = \frac{12}{-6} = -2 \][/tex]

Thus, the slope of the line that contains the points [tex]\((2, -8)\)[/tex] and [tex]\((-4, 4)\)[/tex] is [tex]\(-2\)[/tex].

So, the correct answer is:
[tex]\[ -2 \][/tex]