What is the slope of the line that contains the points [tex]\left(-3, -\frac{5}{2}\right)[/tex] and [tex](3, -8)[/tex]?

A. [tex]-\frac{11}{4}[/tex]
B. [tex]-\frac{11}{12}[/tex]
C. [tex]\frac{11}{4}[/tex]
D. [tex]\frac{11}{12}[/tex]



Answer :

To determine the slope of the line that passes through the points [tex]\(\left(-3, -\frac{5}{2}\right)\)[/tex] and [tex]\((3, -8)\)[/tex], we can use the slope formula, which is:

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

where [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] are coordinates of the two points.

1. Substitute the coordinates into the slope formula:

[tex]\[ m = \frac{-8 - \left(-\frac{5}{2}\right)}{3 - (-3)} \][/tex]

2. Simplify the numerator:

[tex]\[ -8 - \left(-\frac{5}{2}\right) = -8 + \frac{5}{2} \][/tex]

To combine these terms, convert [tex]\(-8\)[/tex] to a fraction with a denominator of 2:

[tex]\[ -8 = \frac{-16}{2} \][/tex]

So,

[tex]\[ -8 + \frac{5}{2} = \frac{-16}{2} + \frac{5}{2} = \frac{-16 + 5}{2} = \frac{-11}{2} \][/tex]

3. Simplify the denominator:

[tex]\[ 3 - (-3) = 3 + 3 = 6 \][/tex]

4. Combine the simplified numerator and denominator:

[tex]\[ m = \frac{\frac{-11}{2}}{6} \][/tex]

5. Simplify the fraction:

To simplify [tex]\(\frac{\frac{-11}{2}}{6}\)[/tex], we multiply the numerator by the reciprocal of the denominator:

[tex]\[ m = \frac{-11}{2} \times \frac{1}{6} = \frac{-11}{12} \][/tex]

Therefore, the slope of the line that contains the points [tex]\(\left(-3, -\frac{5}{2}\right)\)[/tex] and [tex]\( (3, -8) \)[/tex] is:

[tex]\[ m = -\frac{11}{12} \][/tex]

So, the correct answer is [tex]\(\boxed{-\frac{11}{12}}\)[/tex].