A linear relationship is given in the table.

\begin{tabular}{|c|c|c|c|c|c|}
\hline[tex]$x$[/tex] & -2 & -1 & 0 & 1 & 2 \\
\hline[tex]$y$[/tex] & -12 & -7 & -2 & 3 & 8 \\
\hline
\end{tabular}

What is the slope of the relationship?

A. [tex]$5$[/tex]

B. [tex]$-5$[/tex]

C. [tex]$\frac{1}{5}$[/tex]

D. [tex]$-\frac{1}{5}$[/tex]



Answer :

We want to determine the slope of the linear relationship given the table of values.

[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & -2 & -1 & 0 & 1 & 2 \\ \hline y & -12 & -7 & -2 & 3 & 8 \\ \hline \end{array} \][/tex]

To find the slope [tex]\(m\)[/tex] of the linear relationship, we use the formula for the slope between any two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex]:

[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Let's pick the first two points from the table:
- Point A: [tex]\((-2, -12)\)[/tex]
- Point B: [tex]\((-1, -7)\)[/tex]

Now, let's calculate the difference in y-values and x-values between these two points.

[tex]\[ \Delta y = y_2 - y_1 = -7 - (-12) \][/tex]
[tex]\[ \Delta y = -7 + 12 = 5 \][/tex]

[tex]\[ \Delta x = x_2 - x_1 = -1 - (-2) \][/tex]
[tex]\[ \Delta x = -1 + 2 = 1 \][/tex]

Using these differences, we can now determine the slope:

[tex]\[ m = \frac{\Delta y}{\Delta x} = \frac{5}{1} = 5 \][/tex]

Therefore, the slope of the linear relationship is [tex]\(5\)[/tex], which matches one of the given answer choices. Thus, the correct answer is:

[tex]\(5\)[/tex]