What is the fully expanded form of [tex]$(4x-1)(-3x+2)$[/tex]?

A. [tex]-12x^2 + 5x - 2[/tex]
B. [tex]-12x^2 - 5x - 2[/tex]
C. [tex]-12x^2 + 11x + 2[/tex]
D. [tex]-12x^2 + 11x - 2[/tex]



Answer :

To find the fully expanded form of the expression [tex]\((4x - 1)(-3x + 2)\)[/tex], we can use the distributive property to multiply each term in the first binomial by each term in the second binomial. Let's go through the steps in detail:

1. Expand the product [tex]\((4x - 1)(-3x + 2)\)[/tex]:
[tex]\[ (4x - 1)(-3x + 2) \][/tex]
Distribute each term in the first binomial with each term in the second binomial.

2. First, multiply [tex]\(4x\)[/tex] by [tex]\(-3x\)[/tex]:
[tex]\[ 4x \cdot (-3x) = -12x^2 \][/tex]

3. Next, multiply [tex]\(4x\)[/tex] by [tex]\(2\)[/tex]:
[tex]\[ 4x \cdot 2 = 8x \][/tex]

4. Then, multiply [tex]\(-1\)[/tex] by [tex]\(-3x\)[/tex]:
[tex]\[ -1 \cdot (-3x) = 3x \][/tex]

5. Finally, multiply [tex]\(-1\)[/tex] by [tex]\(2\)[/tex]:
[tex]\[ -1 \cdot 2 = -2 \][/tex]

6. Combine all these results:
[tex]\[ -12x^2 + 8x + 3x - 2 \][/tex]

7. Simplify by combining like terms [tex]\(8x\)[/tex] and [tex]\(3x\)[/tex]:
[tex]\[ -12x^2 + 11x - 2 \][/tex]

Therefore, the fully expanded form of [tex]\((4x - 1)(-3x + 2)\)[/tex] is:
[tex]\[ -12x^2 + 11x - 2 \][/tex]

The correct choice from the given options is:
[tex]\[ -12x^2 + 11x - 2 \][/tex]