Factor [tex]$4x^2 + 15x + 14$[/tex] fully.

A. [tex]$(4x + 7)(x + 2)$[/tex]
B. [tex][tex]$(4x + 2)(x + 3)$[/tex][/tex]
C. [tex]$(4x + 8)(x + 9)$[/tex]
D. [tex]$(4x + 2)(2x + 2)$[/tex]



Answer :

To factor the quadratic expression [tex]\(4x^2 + 15x + 14\)[/tex] fully, we need to find two binomials whose product gives the original quadratic expression.

The expression provided is a quadratic equation in the general form [tex]\(ax^2 + bx + c\)[/tex], where [tex]\(a = 4\)[/tex], [tex]\(b = 15\)[/tex], and [tex]\(c = 14\)[/tex]. The goal is to express the quadratic as a product of two binomials:

[tex]\[ (ax + b_1)(cx + d_1) \][/tex]

Here is a step-by-step solution to factor [tex]\(4x^2 + 15x + 14\)[/tex]:

1. Identify the terms:
- The coefficient of [tex]\(x^2\)[/tex] is 4.
- The coefficient of [tex]\(x\)[/tex] is 15.
- The constant term is 14.

2. Set up the binomials:
To find [tex]\((ax + b_1)(cx + d_1)\)[/tex] such that their product is [tex]\(4x^2 + 15x + 14\)[/tex].

3. Find factors of the constant term (14):
The factors of 14 are [tex]\((1, 14)\)[/tex], [tex]\((2, 7)\)[/tex], [tex]\((7, 2)\)[/tex], and [tex]\((14, 1)\)[/tex].

4. Consider the middle term split:
We need to split the middle term 15x into two parts whose coefficients multiply to give [tex]\(4 \cdot 14 = 56\)[/tex].

5. Search for appropriate pairs:
We need numbers whose product is 56 and whose sum is 15.
The correct pair is [tex]\(7\)[/tex] and [tex]\(8\)[/tex] since:
[tex]\[ 7 + 8 = 15 \][/tex]
[tex]\[ 7 \cdot 8 = 56 \][/tex]

6. Construct the binomials:
We can rewrite 15x as follows:
[tex]\[ 4x^2 + 8x + 7x + 14 \][/tex]

7. Factor by grouping:
Group the terms as:
[tex]\[ (4x^2 + 8x) + (7x + 14) \][/tex]

8. Factor out the common factors in each group:
[tex]\[ 4x(x + 2) + 7(x + 2) \][/tex]

9. Factor out the common binomial factor (x + 2):
[tex]\[ (4x + 7)(x + 2) \][/tex]

Therefore, the fully factored form of [tex]\(4x^2 + 15x + 14\)[/tex] is:

[tex]\[ (4x + 7)(x + 2) \][/tex]

Hence, the correct option is:

(4x + 7)(x + 2).