Answer :
To find the maximum margin linear decision boundary in the transformed space for the given XOR problem, follow these steps:
### Step 1: Transform the data points
First, we apply the given transformation to each of the four training points. The transformation is defined as:
[tex]\[ \varphi = \left(1, \sqrt{2} x_1, \sqrt{2} x_2, \sqrt{2} x_1 x_2, x_1^2, x_2^2\right) \][/tex]
#### For the point (1,1,-):
- [tex]\( x_1 = 1 \)[/tex]
- [tex]\( x_2 = 1 \)[/tex]
Applying the transformation:
[tex]\[ \varphi(1,1) = \left(1, \sqrt{2} \cdot 1, \sqrt{2} \cdot 1, \sqrt{2} \cdot 1 \cdot 1, 1^2, 1^2\right) = \left(1, \sqrt{2}, \sqrt{2}, \sqrt{2}, 1, 1\right) \][/tex]
#### For the point (1,0,+):
- [tex]\( x_1 = 1 \)[/tex]
- [tex]\( x_2 = 0 \)[/tex]
Applying the transformation:
[tex]\[ \varphi(1,0) = \left(1, \sqrt{2} \cdot 1, \sqrt{2} \cdot 0, \sqrt{2} \cdot 1 \cdot 0, 1^2, 0^2\right) = \left(1, \sqrt{2}, 0, 0, 1, 0\right) \][/tex]
#### For the point (0,1,+):
- [tex]\( x_1 = 0 \)[/tex]
- [tex]\( x_2 = 1 \)[/tex]
Applying the transformation:
[tex]\[ \varphi(0,1) = \left(1, \sqrt{2} \cdot 0, \sqrt{2} \cdot 1, \sqrt{2} \cdot 0 \cdot 1, 0^2, 1^2\right) = \left(1, 0, \sqrt{2}, 0, 0, 1\right) \][/tex]
#### For the point (0,0,-):
- [tex]\( x_1 = 0 \)[/tex]
- [tex]\( x_2 = 0 \)[/tex]
Applying the transformation:
[tex]\[ \varphi(0,0) = \left(1, \sqrt{2} \cdot 0, \sqrt{2} \cdot 0, \sqrt{2} \cdot 0 \cdot 0, 0^2, 0^2\right) = \left(1, 0, 0, 0, 0, 0\right) \][/tex]
### Step 2: Construct the training set in the transformed space
The transformed data points with their respective labels are:
1. [tex]\(\left(1, \sqrt{2}, \sqrt{2}, \sqrt{2}, 1, 1\right), \text{label: } -\)[/tex]
2. [tex]\(\left(1, \sqrt{2}, 0, 0, 1, 0\right), \text{label: } +\)[/tex]
3. [tex]\(\left(1, 0, \sqrt{2}, 0, 0, 1\right), \text{label: } +\)[/tex]
4. [tex]\(\left(1, 0, 0, 0, 0, 0\right), \text{label: } -\)[/tex]
### Step 3: Find the maximum margin linear decision boundary
In the transformed feature space, finding the maximum margin linear decision boundary involves determining a separating hyperplane (if feasible) that maximizes the distance between the closest points of each class and the hyperplane.
The general form of the decision boundary in this space is:
[tex]\[ w_0 + w_1 \sqrt{2} x_1 + w_2 \sqrt{2} x_2 + w_3 \sqrt{2} x_1 x_2 + w_4 x_1^2 + w_5 x_2^2 = 0 \][/tex]
where [tex]\((w_0, w_1, w_2, w_3, w_4, w_5)\)[/tex] are the weights to be determined. Given the transformed points, we can solve for these weights using standard methods for training Support Vector Machines (SVM) in the new feature space, typically involving convex optimization techniques like quadratic programming.
After running the optimization, you would find the separating hyperplane that maximizes the margin.
Given the complexity, this might usually be executed by software tools that handle SVM optimization.
In the transformed space, for a point [tex]\(\mathbf{x}\)[/tex], the classification function can finally be written as:
[tex]\[ f(\mathbf{x}) = \text{sign}(w_0 + w_1 \sqrt{2} x_1 + w_2 \sqrt{2} x_2 + w_3 \sqrt{2} x_1 x_2 + w_4 x_1^2 + w_5 x_2^2) \][/tex]
### Step 1: Transform the data points
First, we apply the given transformation to each of the four training points. The transformation is defined as:
[tex]\[ \varphi = \left(1, \sqrt{2} x_1, \sqrt{2} x_2, \sqrt{2} x_1 x_2, x_1^2, x_2^2\right) \][/tex]
#### For the point (1,1,-):
- [tex]\( x_1 = 1 \)[/tex]
- [tex]\( x_2 = 1 \)[/tex]
Applying the transformation:
[tex]\[ \varphi(1,1) = \left(1, \sqrt{2} \cdot 1, \sqrt{2} \cdot 1, \sqrt{2} \cdot 1 \cdot 1, 1^2, 1^2\right) = \left(1, \sqrt{2}, \sqrt{2}, \sqrt{2}, 1, 1\right) \][/tex]
#### For the point (1,0,+):
- [tex]\( x_1 = 1 \)[/tex]
- [tex]\( x_2 = 0 \)[/tex]
Applying the transformation:
[tex]\[ \varphi(1,0) = \left(1, \sqrt{2} \cdot 1, \sqrt{2} \cdot 0, \sqrt{2} \cdot 1 \cdot 0, 1^2, 0^2\right) = \left(1, \sqrt{2}, 0, 0, 1, 0\right) \][/tex]
#### For the point (0,1,+):
- [tex]\( x_1 = 0 \)[/tex]
- [tex]\( x_2 = 1 \)[/tex]
Applying the transformation:
[tex]\[ \varphi(0,1) = \left(1, \sqrt{2} \cdot 0, \sqrt{2} \cdot 1, \sqrt{2} \cdot 0 \cdot 1, 0^2, 1^2\right) = \left(1, 0, \sqrt{2}, 0, 0, 1\right) \][/tex]
#### For the point (0,0,-):
- [tex]\( x_1 = 0 \)[/tex]
- [tex]\( x_2 = 0 \)[/tex]
Applying the transformation:
[tex]\[ \varphi(0,0) = \left(1, \sqrt{2} \cdot 0, \sqrt{2} \cdot 0, \sqrt{2} \cdot 0 \cdot 0, 0^2, 0^2\right) = \left(1, 0, 0, 0, 0, 0\right) \][/tex]
### Step 2: Construct the training set in the transformed space
The transformed data points with their respective labels are:
1. [tex]\(\left(1, \sqrt{2}, \sqrt{2}, \sqrt{2}, 1, 1\right), \text{label: } -\)[/tex]
2. [tex]\(\left(1, \sqrt{2}, 0, 0, 1, 0\right), \text{label: } +\)[/tex]
3. [tex]\(\left(1, 0, \sqrt{2}, 0, 0, 1\right), \text{label: } +\)[/tex]
4. [tex]\(\left(1, 0, 0, 0, 0, 0\right), \text{label: } -\)[/tex]
### Step 3: Find the maximum margin linear decision boundary
In the transformed feature space, finding the maximum margin linear decision boundary involves determining a separating hyperplane (if feasible) that maximizes the distance between the closest points of each class and the hyperplane.
The general form of the decision boundary in this space is:
[tex]\[ w_0 + w_1 \sqrt{2} x_1 + w_2 \sqrt{2} x_2 + w_3 \sqrt{2} x_1 x_2 + w_4 x_1^2 + w_5 x_2^2 = 0 \][/tex]
where [tex]\((w_0, w_1, w_2, w_3, w_4, w_5)\)[/tex] are the weights to be determined. Given the transformed points, we can solve for these weights using standard methods for training Support Vector Machines (SVM) in the new feature space, typically involving convex optimization techniques like quadratic programming.
After running the optimization, you would find the separating hyperplane that maximizes the margin.
Given the complexity, this might usually be executed by software tools that handle SVM optimization.
In the transformed space, for a point [tex]\(\mathbf{x}\)[/tex], the classification function can finally be written as:
[tex]\[ f(\mathbf{x}) = \text{sign}(w_0 + w_1 \sqrt{2} x_1 + w_2 \sqrt{2} x_2 + w_3 \sqrt{2} x_1 x_2 + w_4 x_1^2 + w_5 x_2^2) \][/tex]