\begin{tabular}{cc}
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-56 & 66 \\
-42 & 58 \\
-28 & 50 \\
\end{tabular}

What is the [tex]$y$[/tex]-intercept of the line?



Answer :

To find the [tex]\(y\)[/tex]-intercept of the line passing through the given points, we need to follow these steps:

1. Identify two points to calculate the slope of the line.
2. Use the slope to find the [tex]\(y\)[/tex]-intercept.

### Step 1: Calculate the Slope (m)

The given points from the table are:
[tex]\[ (x_1, y_1) = (-56, 66) \][/tex]
[tex]\[ (x_2, y_2) = (-42, 58) \][/tex]

The formula for the slope (m) between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Plugging in the values:
[tex]\[ m = \frac{58 - 66}{-42 - (-56)} = \frac{58 - 66}{-42 + 56} = \frac{-8}{14} = -0.5714285714285714 \][/tex]

### Step 2: Find the [tex]\(y\)[/tex]-intercept (b)

The equation of a line in slope-intercept form is:
[tex]\[ y = mx + b \][/tex]

To find the [tex]\(y\)[/tex]-intercept (b), we can use one of the points and the slope. Let's use the point [tex]\((-56, 66)\)[/tex]:

[tex]\[ 66 = (-0.5714285714285714) \cdot (-56) + b \][/tex]

First, calculate [tex]\((-0.5714285714285714) \cdot (-56)\)[/tex]:
[tex]\[ -0.5714285714285714 \cdot -56 = 32 \][/tex]

Now substitute back in:
[tex]\[ 66 = 32 + b \][/tex]

Solve for [tex]\(b\)[/tex]:
[tex]\[ b = 66 - 32 = 34 \][/tex]

Thus, the [tex]\(y\)[/tex]-intercept of the line is:
[tex]\[ b = 34 \][/tex]