Answer :
Let's analyze each of the given tables one by one to see which one represents the equation [tex]\( s = \frac{3}{4} f \)[/tex].
Table 1:
[tex]\[ \begin{array}{|c|c|} \hline \text{Sugar} & \text{Flour} \\ \hline 1 & \frac{6}{4} \\ \hline 2 & \frac{3}{4} \\ \hline \end{array} \][/tex]
For this table:
- For the first row: [tex]\(\frac{3}{4} \times \frac{6}{4} = \frac{18}{16} = 1.125 \neq 1\)[/tex]
- For the second row: [tex]\(\frac{3}{4} \times \frac{3}{4} = \frac{9}{16} \neq 2\)[/tex]
Both rows do not satisfy [tex]\( s = \frac{3}{4} f \)[/tex].
Table 2:
[tex]\[ \begin{array}{|c|c|} \hline \text{Sugar} & \text{Flour} \\ \hline \frac{6}{4} & 1 \\ \hline \frac{3}{4} & 2 \\ \hline \end{array} \][/tex]
For this table:
- For the first row: [tex]\(\frac{3}{4} \times 1 = \frac{3}{4} \neq \frac{6}{4}\)[/tex]
- For the second row: [tex]\(\frac{3}{4} \times 2 = \frac{6}{4} \neq \frac{3}{4}\)[/tex]
Both rows do not satisfy [tex]\( s = \frac{3}{4} f \)[/tex].
Table 3:
[tex]\[ \begin{array}{|c|c|} \hline \text{Sugar} & \text{Flour} \\ \hline \frac{3}{4} & 1 \\ \hline \frac{6}{4} & 2 \\ \hline \end{array} \][/tex]
For this table:
- For the first row: [tex]\(\frac{3}{4} \times 1 = \frac{3}{4} \rightarrow \text{True}\)[/tex]
- For the second row: [tex]\(\frac{3}{4} \times 2 = \frac{6}{4} \rightarrow \text{True}\)[/tex]
Both rows satisfy [tex]\( s = \frac{3}{4} f \)[/tex].
Table 4:
[tex]\[ \begin{array}{|c|c|} \hline \text{Sugar} & \text{Flour} \\ \hline 1 & \frac{3}{4} \\ \hline 2 & \frac{6}{4} \\ \hline \end{array} \][/tex]
For this table:
- For the first row: [tex]\(\frac{3}{4} \times \frac{3}{4} = \frac{9}{16} \neq 1\)[/tex]
- For the second row: [tex]\(\frac{3}{4} \times \frac{6}{4} = \frac{18}{16} \neq 2\)[/tex]
Both rows do not satisfy [tex]\( s = \frac{3}{4} f \)[/tex].
Based on the analysis above, the table that correctly represents the equation [tex]\( s = \frac{3}{4} f \)[/tex] is Table 3:
[tex]\[ \begin{array}{|c|c|} \hline \text{Sugar} & \text{Flour} \\ \hline \frac{3}{4} & 1 \\ \hline \frac{6}{4} & 2 \\ \hline \end{array} \][/tex]
Table 1:
[tex]\[ \begin{array}{|c|c|} \hline \text{Sugar} & \text{Flour} \\ \hline 1 & \frac{6}{4} \\ \hline 2 & \frac{3}{4} \\ \hline \end{array} \][/tex]
For this table:
- For the first row: [tex]\(\frac{3}{4} \times \frac{6}{4} = \frac{18}{16} = 1.125 \neq 1\)[/tex]
- For the second row: [tex]\(\frac{3}{4} \times \frac{3}{4} = \frac{9}{16} \neq 2\)[/tex]
Both rows do not satisfy [tex]\( s = \frac{3}{4} f \)[/tex].
Table 2:
[tex]\[ \begin{array}{|c|c|} \hline \text{Sugar} & \text{Flour} \\ \hline \frac{6}{4} & 1 \\ \hline \frac{3}{4} & 2 \\ \hline \end{array} \][/tex]
For this table:
- For the first row: [tex]\(\frac{3}{4} \times 1 = \frac{3}{4} \neq \frac{6}{4}\)[/tex]
- For the second row: [tex]\(\frac{3}{4} \times 2 = \frac{6}{4} \neq \frac{3}{4}\)[/tex]
Both rows do not satisfy [tex]\( s = \frac{3}{4} f \)[/tex].
Table 3:
[tex]\[ \begin{array}{|c|c|} \hline \text{Sugar} & \text{Flour} \\ \hline \frac{3}{4} & 1 \\ \hline \frac{6}{4} & 2 \\ \hline \end{array} \][/tex]
For this table:
- For the first row: [tex]\(\frac{3}{4} \times 1 = \frac{3}{4} \rightarrow \text{True}\)[/tex]
- For the second row: [tex]\(\frac{3}{4} \times 2 = \frac{6}{4} \rightarrow \text{True}\)[/tex]
Both rows satisfy [tex]\( s = \frac{3}{4} f \)[/tex].
Table 4:
[tex]\[ \begin{array}{|c|c|} \hline \text{Sugar} & \text{Flour} \\ \hline 1 & \frac{3}{4} \\ \hline 2 & \frac{6}{4} \\ \hline \end{array} \][/tex]
For this table:
- For the first row: [tex]\(\frac{3}{4} \times \frac{3}{4} = \frac{9}{16} \neq 1\)[/tex]
- For the second row: [tex]\(\frac{3}{4} \times \frac{6}{4} = \frac{18}{16} \neq 2\)[/tex]
Both rows do not satisfy [tex]\( s = \frac{3}{4} f \)[/tex].
Based on the analysis above, the table that correctly represents the equation [tex]\( s = \frac{3}{4} f \)[/tex] is Table 3:
[tex]\[ \begin{array}{|c|c|} \hline \text{Sugar} & \text{Flour} \\ \hline \frac{3}{4} & 1 \\ \hline \frac{6}{4} & 2 \\ \hline \end{array} \][/tex]