Cara computes the mean and variance for the set [tex]$87, 46, 90, 78, 89$[/tex]. She finds the mean to be 78. Her steps for finding the variance are shown below.

[tex]\[
\begin{array}{l}
\sigma^2 = \frac{(87-78)^2 + (46-78)^2 + (90-78)^2 + (78-78)^2 + (89-78)^2}{5} \\
\sigma^2 = \frac{(9)^2 - (32)^2 + (12)^2 + 0^2 + (11)^2}{5} \\
\sigma^2 = \frac{81 - 1024 + 144 + 0 + 121}{5} \\
\sigma^2 = \frac{-678}{5} = -135.6
\end{array}
\][/tex]

What is the first error Cara made in computing the variance?



Answer :

Let's follow Cara's steps in detail to find the error in her computation.

### Step-by-Step Solution

1. Cara's given values: 87, 46, 90, 78, 89.
2. Mean (average) calculation:
- Cara correctly finds the mean, [tex]\(\overline{X}\)[/tex], to be 78.

3. Steps to find variance ([tex]\(\sigma^2\)[/tex]):

Cara uses the formula for variance:
[tex]\[ \sigma^2 = \frac{\sum_{i=1}^n (x_i - \overline{X})^2}{n} \][/tex]
Substituting the given data:
[tex]\[ \sigma^2 = \frac{(87 - 78)^2 + (46 - 78)^2 + (90 - 78)^2 + (78 - 78)^2 + (89 - 78)^2}{5} \][/tex]

4. Calculating each squared difference from the mean:
[tex]\[ (87 - 78)^2 = 9^2 = 81 \][/tex]
[tex]\[ (46 - 78)^2 = (-32)^2 = 1024 \][/tex]
[tex]\[ (90 - 78)^2 = 12^2 = 144 \][/tex]
[tex]\[ (78 - 78)^2 = 0^2 = 0 \][/tex]
[tex]\[ (89 - 78)^2 = 11^2 = 121 \][/tex]

5. Adding the squared differences:
[tex]\[ 81 + 1024 + 144 + 0 + 121 \][/tex]
Sum these values:
[tex]\[ 81 + 1024 + 144 + 0 + 121 = 1370 \][/tex]

6. Calculating the variance:
[tex]\[ \sigma^2 = \frac{1370}{5} = 274.0 \][/tex]

### Identifying Cara's Mistake

Cara made a mistake at this critical step:
In her solution, she subtracts some squared differences rather than summing all the squared differences, which is an incorrect approach. She incorrectly wrote the expression as:
[tex]\[ 81 - 1024 + 144 + 0 + 121 \][/tex]
Instead of summing the squared differences, she subtracted [tex]\(1024\)[/tex].

### Correct Calculation:
Correctly summing the squared differences, as shown, should be:
[tex]\[ 81 + 1024 + 144 + 0 + 121 = 1370 \][/tex]
Dividing this sum by the number of values (5):
[tex]\[ \sigma^2 = \frac{1370}{5} = 274.0 \][/tex]

Therefore, the first error Cara made in computing the variance was subtracting the squared differences instead of adding them all together. The correct variance should be 274.0.