Answer :

Certainly! Let's expand the given algebraic expression: [tex]\((2x^2 - x - 1)^3\)[/tex].

To expand this, we apply the binomial theorem for a cubic expansion, which involves distributing and combining terms in a structured manner. Instead of calculating each step manually, I’ll explain the process that leads us to the expanded form:

1. Start with the expression:
[tex]\[(2x^2 - x - 1)^3\][/tex]

2. Cube the expression:
Expanding [tex]\((2x^2 - x - 1)^3\)[/tex] involves finding the product of [tex]\((2x^2 - x - 1)\)[/tex] with itself three times:
[tex]\[(2x^2 - x - 1)(2x^2 - x - 1)(2x^2 - x - 1)\][/tex]

3. First, expand [tex]\((2x^2 - x - 1)(2x^2 - x - 1)\)[/tex]:
We multiply each term in the first polynomial by each term in the second polynomial:
[tex]\[ (2x^2 - x - 1)(2x^2 - x - 1) = (2x^2)(2x^2) + (2x^2)(-x) + (2x^2)(-1) + (-x)(2x^2) + (-x)(-x) + (-x)(-1) + (-1)(2x^2) + (-1)(-x) + (-1)(-1) \][/tex]

Simplifying this:
[tex]\[ = 4x^4 - 2x^3 - 2x^2 - 2x^3 + x^2 + x - 2x^2 + x + 1 \][/tex]

Combine like terms:
[tex]\[ = 4x^4 - 4x^3 - 3x^2 + 2x + 1 \][/tex]

4. Next, multiply the result by the remaining [tex]\((2x^2 - x - 1)\)[/tex]:
We then take our result [tex]\(4x^4 - 4x^3 - 3x^2 + 2x + 1\)[/tex] and multiply it by [tex]\(2x^2 - x - 1\)[/tex]:
[tex]\[ (4x^4 - 4x^3 - 3x^2 + 2x + 1)(2x^2 - x - 1) \][/tex]

The expansion involves distributing each term of the first polynomial to each term of the second polynomial. After carefully combining like terms, the simplified result is:

[tex]\[ 8x^6 - 12x^5 - 6x^4 + 11x^3 + 3x^2 - 3x - 1 \][/tex]

Therefore, the expanded form of [tex]\((2x^2 - x - 1)^3\)[/tex] is:

[tex]\[ \boxed{8x^6 - 12x^5 - 6x^4 + 11x^3 + 3x^2 - 3x - 1} \][/tex]