Answer :

To expand the expression [tex]\((-4x - 5)(-x^2 - x + 4)\)[/tex] and write it in standard form, we need to distribute each term in the first binomial to every term in the second trinomial.

1. Distribute [tex]\(-4x\)[/tex] to each term in [tex]\((-x^2 - x + 4)\)[/tex]:
[tex]\[ (-4x)(-x^2) + (-4x)(-x) + (-4x)(4) \][/tex]

[tex]\[ 4x^3 + 4x^2 - 16x \][/tex]

2. Distribute [tex]\(-5\)[/tex] to each term in [tex]\((-x^2 - x + 4)\)[/tex]:
[tex]\[ (-5)(-x^2) + (-5)(-x) + (-5)(4) \][/tex]

[tex]\[ 5x^2 + 5x - 20 \][/tex]

3. Combine all the distributed terms:
[tex]\[ 4x^3 + 4x^2 - 16x + 5x^2 + 5x - 20 \][/tex]

4. Combine like terms:
[tex]\[ 4x^3 + (4x^2 + 5x^2) + (-16x + 5x) - 20 \][/tex]

[tex]\[ 4x^3 + 9x^2 - 11x - 20 \][/tex]

So, the polynomial in standard form is:

[tex]\[ \boxed{4x^3 + 9x^2 - 11x - 20} \][/tex]