The population of a certain inner-city area is estimated to be declining according to the model [tex]P(t) = 328,000 e^{-0.022 t}[/tex], where [tex]t[/tex] is the number of years from the present. What does this model predict the population will be in 11 years? Round to the nearest person.

Answer: [tex]$\square$[/tex] people



Answer :

To determine the predicted population in 11 years using the population decline model [tex]\( P(t) = 328,000 e^{-0.022t} \)[/tex], follow these steps:

1. Identify the given parameters:
- Initial population, [tex]\( P_0 = 328,000 \)[/tex]
- Decline rate, [tex]\( r = -0.022 \)[/tex]
- Number of years, [tex]\( t = 11 \)[/tex]

2. Substitute these values into the model:
[tex]\[ P(t) = 328,000 e^{-0.022 \times 11} \][/tex]

3. Calculate the exponent:
[tex]\[ -0.022 \times 11 = -0.242 \][/tex]

4. Use the calculated exponent in the model:
[tex]\[ P(11) = 328,000 e^{-0.242} \][/tex]

5. Find the value of the exponential expression [tex]\( e^{-0.242} \)[/tex]:
[tex]\[ e^{-0.242} \approx 0.784 \][/tex]

6. Multiply the initial population by this value:
[tex]\[ P(11) = 328,000 \times 0.784 \approx 257,498.4262370001 \][/tex]

7. Round the result to the nearest person:
[tex]\[ \text{Rounded population} \approx 257,498 \][/tex]

Therefore, the model predicts that the population of the inner-city area in 11 years will be approximately [tex]\( 257,498 \)[/tex] people.