What are the two solutions?

[tex]\[
\begin{array}{l}
x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-8)}}{2(1)} \\
x = \frac{2 \pm 6}{2}
\end{array}
\][/tex]

A. [tex]\(x = 4, x = -4\)[/tex]
B. [tex]\(x = 3, x = 4\)[/tex]
C. [tex]\(x = 6, x = -6\)[/tex]
D. [tex]\(x = 4, x = -2\)[/tex]



Answer :

To find the solutions for the quadratic equation given by

[tex]\[ x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-8)}}{2(1)} \][/tex]

we go through the following steps:

1. Identify the coefficients: For the quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex], we have:
[tex]\[ a = 1, \quad b = -2, \quad c = -8 \][/tex]

2. Calculate the discriminant: The discriminant [tex]\(\Delta\)[/tex] of the quadratic equation is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting in the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
[tex]\[ \Delta = (-2)^2 - 4 \cdot 1 \cdot (-8) = 4 + 32 = 36 \][/tex]

3. Find the square root of the discriminant:
[tex]\[ \sqrt{\Delta} = \sqrt{36} = 6 \][/tex]

4. Apply the quadratic formula: The roots [tex]\(x\)[/tex] are given by:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
With [tex]\(b = -2\)[/tex], [tex]\(a = 1\)[/tex], and [tex]\(\sqrt{\Delta} = 6\)[/tex]:
[tex]\[ x = \frac{-(-2) \pm 6}{2 \cdot 1} = \frac{2 \pm 6}{2} \][/tex]

This gives us two possible solutions:
[tex]\[ x_1 = \frac{2 + 6}{2} = \frac{8}{2} = 4 \][/tex]
[tex]\[ x_2 = \frac{2 - 6}{2} = \frac{-4}{2} = -2 \][/tex]

Therefore, the two solutions for the quadratic equation are:
[tex]\[ x = 4 \quad \text{and} \quad x = -2 \][/tex]

So, the correct answer is:
[tex]\[ x = 4 ; x = -2 \][/tex]