Type the correct answer in each box. Use numerals instead of words.

Consider the equation below.
[tex]
\frac{x}{h}+1=-2
[/tex]

The value of [tex]x[/tex] in terms of [tex]h[/tex] is [tex]\square[/tex]

The value of [tex]x[/tex] when [tex]h=4[/tex] is [tex]\square[/tex]



Answer :

Alright, let's solve the given equation step by step.

We start with the equation:
[tex]\[ \frac{x}{h} + 1 = -2 \][/tex]

First, we isolate [tex]\(\frac{x}{h}\)[/tex] by subtracting 1 from both sides:
[tex]\[ \frac{x}{h} = -2 - 1 \][/tex]
[tex]\[ \frac{x}{h} = -3 \][/tex]

Next, to isolate [tex]\(x\)[/tex], we multiply both sides by [tex]\(h\)[/tex]:
[tex]\[ x = -3h \][/tex]

So, the value of [tex]\(x\)[/tex] in terms of [tex]\(h\)[/tex] is:
[tex]\[ x = -3h \][/tex]

Now, we need to find the value of [tex]\(x\)[/tex] when [tex]\(h = 4\)[/tex]:
[tex]\[ x = -3 \times 4 \][/tex]
[tex]\[ x = -12 \][/tex]

Thus, the value of [tex]\(x\)[/tex] in terms of [tex]\(h\)[/tex] is [tex]\(-3h\)[/tex], and the value of [tex]\(x\)[/tex] when [tex]\(h = 4\)[/tex] is [tex]\(-12\)[/tex].