Alright, let's solve the given equation step by step.
We start with the equation:
[tex]\[
\frac{x}{h} + 1 = -2
\][/tex]
First, we isolate [tex]\(\frac{x}{h}\)[/tex] by subtracting 1 from both sides:
[tex]\[
\frac{x}{h} = -2 - 1
\][/tex]
[tex]\[
\frac{x}{h} = -3
\][/tex]
Next, to isolate [tex]\(x\)[/tex], we multiply both sides by [tex]\(h\)[/tex]:
[tex]\[
x = -3h
\][/tex]
So, the value of [tex]\(x\)[/tex] in terms of [tex]\(h\)[/tex] is:
[tex]\[
x = -3h
\][/tex]
Now, we need to find the value of [tex]\(x\)[/tex] when [tex]\(h = 4\)[/tex]:
[tex]\[
x = -3 \times 4
\][/tex]
[tex]\[
x = -12
\][/tex]
Thus, the value of [tex]\(x\)[/tex] in terms of [tex]\(h\)[/tex] is [tex]\(-3h\)[/tex], and the value of [tex]\(x\)[/tex] when [tex]\(h = 4\)[/tex] is [tex]\(-12\)[/tex].