Answered

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
Number of \\
Workers
\end{tabular} & Output & Total Cost & Fixed Cost & Variable Cost \\
\hline 1 & 20 & [tex]$\$[/tex] 300[tex]$ & $[/tex]\[tex]$ 250$[/tex] & [tex]$\$[/tex] 50[tex]$ \\
\hline 2 & 35 & $[/tex]\[tex]$ 352$[/tex] & [tex]$\$[/tex] 250[tex]$ & $[/tex]\[tex]$ 102$[/tex] \\
\hline 3 & 45 & [tex]$\$[/tex] 406[tex]$ & $[/tex]\[tex]$ 250$[/tex] & [tex]$\$[/tex] 156[tex]$ \\
\hline 4 & 50 & $[/tex]\[tex]$ 462$[/tex] & [tex]$\$[/tex] 250[tex]$ & $[/tex]\[tex]$ 212$[/tex] \\
\hline
\end{tabular}

What is the marginal cost of producing the 45th unit of output?

A. [tex]$\$[/tex] 5.40[tex]$

B. $[/tex]\[tex]$ 52$[/tex]

C. [tex]$\$[/tex] 154[tex]$

D. $[/tex]\[tex]$ 156$[/tex]



Answer :

To determine the marginal cost of producing the 45th unit of output, we need to follow a step-by-step process. Marginal cost is defined as the change in the total variable cost divided by the change in the output level. Here’s how to find it:

1. Identify the variable costs and outputs for relevant workers:

- For the second worker:
- Variable Cost = \[tex]$102 - Output = 35 units - For the third worker: - Variable Cost = \$[/tex]156
- Output = 45 units

2. Calculate the change in variable costs (ΔC):

[tex]\[ \Delta C = \text{Variable Cost for 3 workers} - \text{Variable Cost for 2 workers} \][/tex]
[tex]\[ \Delta C = 156 - 102 = 54 \][/tex]

3. Calculate the change in output (ΔQ):

[tex]\[ \Delta Q = \text{Output for 3 workers} - \text{Output for 2 workers} \][/tex]
[tex]\[ \Delta Q = 45 - 35 = 10 \][/tex]

4. Calculate the marginal cost (MC):

[tex]\[ \text{MC} = \frac{\Delta C}{\Delta Q} \][/tex]
[tex]\[ \text{MC} = \frac{54}{10} = 5.4 \][/tex]

Therefore, the marginal cost of producing the 45th unit of output is [tex]\( \$ 5.40 \)[/tex].

The correct answer is:

[tex]\[ \$ 5.40 \][/tex]