Question 7 of 21

Which of the following expressions is equivalent to the one shown below?

[tex]\[ \frac{7^{13}}{7^7} \][/tex]

A. [tex]\( 7^{91} \)[/tex]

B. [tex]\( 7^6 \)[/tex]

C. [tex]\( 7^5 \)[/tex]

D. [tex]\( 7^{20} \)[/tex]



Answer :

To determine which expression is equivalent to [tex]\(\frac{7^{13}}{7^7}\)[/tex], we need to simplify the given expression using the laws of exponents.

Given:
[tex]\[ \frac{7^{13}}{7^7} \][/tex]

Recall the property of exponents that states:
[tex]\[ \frac{a^m}{a^n} = a^{m-n} \][/tex]

Here, [tex]\(a\)[/tex] is the base (7), [tex]\(m\)[/tex] is the exponent in the numerator (13), and [tex]\(n\)[/tex] is the exponent in the denominator (7).

Applying the property:
[tex]\[ \frac{7^{13}}{7^7} = 7^{13-7} \][/tex]

Subtract the exponents:
[tex]\[ 7^{13-7} = 7^6 \][/tex]

So, the expression [tex]\(\frac{7^{13}}{7^7}\)[/tex] simplifies to [tex]\(7^6\)[/tex].

Therefore, the equivalent expression is:
[tex]\[ \boxed{7^6} \][/tex]

Among the given options:
A. [tex]\(7^{91}\)[/tex]
B. [tex]\(7^6\)[/tex]
C. [tex]\(7^5\)[/tex]
D. [tex]\(7^{20}\)[/tex]

The correct answer is:
[tex]\[ \boxed{7^6} \][/tex]