Which value for the constant [tex]d[/tex] makes [tex]y=20[/tex] an extraneous solution to the following equation?

[tex]\[
\sqrt{\frac{1}{2} y-1} = \frac{3}{4} y + d
\][/tex]

[tex]d = \square[/tex]



Answer :

Sure, let's solve for the constant [tex]\( d \)[/tex] that makes [tex]\( y = 20 \)[/tex] a solution to the given equation:

[tex]\[ \sqrt{\frac{1}{2} y - 1} = \frac{3}{4} y + d \][/tex]

We need to substitute [tex]\( y = 20 \)[/tex] into the equation and solve for [tex]\( d \)[/tex].

1. Substitute [tex]\( y = 20 \)[/tex] into the equation:

[tex]\[ \sqrt{\frac{1}{2} \cdot 20 - 1} = \frac{3}{4} \cdot 20 + d \][/tex]

2. Simplify the expression inside the square root:

[tex]\[ \frac{1}{2} \cdot 20 - 1 = 10 - 1 = 9 \][/tex]

So the left side of the equation becomes:

[tex]\[ \sqrt{9} \][/tex]

And we know [tex]\( \sqrt{9} = 3 \)[/tex].

3. Simplify the expression on the right side of the equation:

[tex]\[ \frac{3}{4} \cdot 20 + d = 15 + d \][/tex]

Now we have the simplified equation:

[tex]\[ 3 = 15 + d \][/tex]

4. Solve for [tex]\( d \)[/tex]:

[tex]\[ 3 = 15 + d \][/tex]
[tex]\[ d = 3 - 15 \][/tex]
[tex]\[ d = -12 \][/tex]

Therefore, the value for the constant [tex]\( d \)[/tex] that makes [tex]\( y = 20 \)[/tex] a solution to the equation is:

[tex]\[ d = -12 \][/tex]