i) [tex]\[ \frac{1}{a+b+x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x} \][/tex]

(Note: The equation as given is mathematically incorrect for general values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(x\)[/tex]. If it is intended to be a valid equation for some specific context or values, additional information would be required. However, without changing or removing any part of the given LaTeX formatting, the above is the formatted version.)



Answer :

Certainly! Let's solve the given equation step-by-step:

Given:
[tex]\[ \frac{1}{a + b + x} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x} \][/tex]

To solve for [tex]\( x \)[/tex], let's start by finding a common denominator for the fractions on the right-hand side.

On the right-hand side, we have:
[tex]\[ \frac{1}{a} + \frac{1}{b} + \frac{1}{x} \][/tex]

The common denominator for [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( x \)[/tex] is [tex]\( abx \)[/tex]. Rewriting each fraction with this common denominator, we get:
[tex]\[ \frac{bx}{abx} + \frac{ax}{abx} + \frac{ab}{abx} \][/tex]

This simplifies to:
[tex]\[ \frac{bx + ax + ab}{abx} \][/tex]

So, our original equation can now be written as:
[tex]\[ \frac{1}{a + b + x} = \frac{bx + ax + ab}{abx} \][/tex]

Next, we need to cross-multiply to solve for [tex]\( x \)[/tex]. Cross-multiplying gives us:
[tex]\[ abx = (a + b + x)(bx + ax + ab) \][/tex]

Expanding the right-hand side:
[tex]\[ abx = a \cdot bx + a \cdot ax + a \cdot ab + b \cdot bx + b \cdot ax + b \cdot ab + x \cdot bx + x \cdot ax + x \cdot ab \][/tex]

Simplifying each term:
[tex]\[ abx = abx + a^2x + a^2b + abx + b^2x + b^2a + bx^2 + ax^2 + abx \][/tex]

Combining like terms:
[tex]\[ abx = 3abx + a^2x + abx + b^2x + bx^2 + ax^2 \][/tex]

To simplify, we can group the terms involving [tex]\( x \)[/tex] and the constant terms:
[tex]\[ abx = 3abx + a^2x + b^2x + (a + b) x^2 + a^2 b + b^2 a \][/tex]

Let's isolate the [tex]\( x \)[/tex]-terms and the constant terms:
[tex]\[ abx - 3abx = a^2x + b^2x + (a + b) x^2 + a^2 b + b^2 a \][/tex]

Simplifying further, we get:
[tex]\[ -2abx = a^2x + b^2x + (a + b) x^2 \][/tex]

Rearranging to make [tex]\( x \)[/tex] the subject, we get:
[tex]\[ -2abx - a^2x - b^2x - (a + b) x^2 = 0 \][/tex]

Factoring [tex]\( x \)[/tex] out:
[tex]\[ x(-2ab - a^2 - b^2 - (a + b) x) = 0 \][/tex]

This implies that:
[tex]\[ -2ab - a^2 - b^2 - (a + b) x = 0 \][/tex]

Solving for [tex]\( x \)[/tex], we find the roots [tex]\( x = -a \)[/tex] or [tex]\( x = -b \)[/tex].

Therefore, the solutions to the equation are:
[tex]\[ x = -a \quad \text{or} \quad x = -b \][/tex]