5. The length of the hypotenuse of a [tex]30^{\circ}-60^{\circ}-90^{\circ}[/tex] triangle is 4. Find the longer leg.

A. [tex]2 \sqrt{3}[/tex]

B. [tex]4 \sqrt{3}[/tex]

C. 8

D. [tex]2 \sqrt{2}[/tex]



Answer :

Sure! Let's solve the problem step-by-step.

A [tex]\(30^{\circ}-60^{\circ}-90^{\circ}\)[/tex] triangle has specific side length ratios:
- The side opposite the [tex]\(30^{\circ}\)[/tex] angle (short leg) is [tex]\(x\)[/tex].
- The side opposite the [tex]\(60^{\circ}\)[/tex] angle (long leg) is [tex]\(x\sqrt{3}\)[/tex].
- The hypotenuse is [tex]\(2x\)[/tex].

Given that the hypotenuse is 4, we can find [tex]\(x\)[/tex] by setting up the equation for the hypotenuse:
[tex]\[ 2x = 4 \][/tex]

Solving for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{4}{2} = 2 \][/tex]

Now, we need to find the length of the longer leg, which is given by [tex]\(x\sqrt{3}\)[/tex]:
[tex]\[ \text{Longer leg} = x\sqrt{3} = 2\sqrt{3} \][/tex]

So, the length of the longer leg is [tex]\(2\sqrt{3}\)[/tex].

Therefore, the correct answer is:
[tex]\[ 2\sqrt{3} \][/tex]