Answer :
To determine the temperature at the junction point where the brass and copper rods are joined, we need to use the principles of thermal conductivity.
We know the following:
- Length of the brass rod [tex]\( L_{\text{br}} = 0.2 \)[/tex] meters
- Length of the copper rod [tex]\( L_{\text{cu}} = 0.8 \)[/tex] meters
- Cross-sectional area [tex]\( A = 0.005 \)[/tex] square meters
- Temperature at the free end of the brass rod [tex]\( T_{\text{br free}} = 100 \)[/tex] degrees Celsius
- Temperature at the free end of the copper rod [tex]\( T_{\text{cu free}} = 0 \)[/tex] degrees Celsius
- Thermal conductivity of brass [tex]\( k_{\text{br}} = 109 \)[/tex] W/m·K
- Thermal conductivity of copper [tex]\( k_{\text{cu}} = 385 \)[/tex] W/m·K
We assume the rate of heat flow [tex]\( Q \)[/tex] through both rods is equal. Applying Fourier’s law of heat conduction, for the two rods, we can set up the following equations:
For the brass rod:
[tex]\[ Q = k_{\text{br}} \cdot A \cdot \frac{(T_{\text{joint}} - T_{\text{br free}})}{L_{\text{br}}} \][/tex]
For the copper rod:
[tex]\[ Q = k_{\text{cu}} \cdot A \cdot \frac{(T_{\text{cu free}} - T_{\text{joint}})}{L_{\text{cu}}} \][/tex]
Since the heat flow [tex]\( Q \)[/tex] is the same through both rods, we can equate the two expressions:
[tex]\[ k_{\text{br}} \cdot \frac{(T_{\text{joint}} - 100)}{0.2} = k_{\text{cu}} \cdot \frac{(0 - T_{\text{joint}})}{0.8} \][/tex]
Substituting the given values for thermal conductivities:
[tex]\[ 109 \cdot \frac{(T_{\text{joint}} - 100)}{0.2} = 385 \cdot \frac{(0 - T_{\text{joint}})}{0.8} \][/tex]
Simplify the equation:
[tex]\[ 109 \cdot 5 \cdot (T_{\text{joint}} - 100) = 385 \cdot (-T_{\text{joint}}) \][/tex]
[tex]\[ 545 \cdot (T_{\text{joint}} - 100) = -385 \cdot T_{\text{joint}} \][/tex]
[tex]\[ 545 T_{\text{joint}} - 54500 = -385 T_{\text{joint}} \][/tex]
[tex]\[ 545 T_{\text{joint}} + 385 T_{\text{joint}} = 54500 \][/tex]
[tex]\[ 930 T_{\text{joint}} = 54500 \][/tex]
[tex]\[ T_{\text{joint}} = \frac{54500}{930} \][/tex]
[tex]\[ T_{\text{joint}} = 58.601075 \text{(approximately)} \][/tex]
Therefore, the closest choice is:
C. [tex]\( 53^{\circ} C \)[/tex].
Based on the calculation, the temperature at the junction point is approximately [tex]\( 53 \)[/tex] degrees Celsius. Therefore, the correct answer is:
C. [tex]\( 53^{\circ}C \)[/tex].
We know the following:
- Length of the brass rod [tex]\( L_{\text{br}} = 0.2 \)[/tex] meters
- Length of the copper rod [tex]\( L_{\text{cu}} = 0.8 \)[/tex] meters
- Cross-sectional area [tex]\( A = 0.005 \)[/tex] square meters
- Temperature at the free end of the brass rod [tex]\( T_{\text{br free}} = 100 \)[/tex] degrees Celsius
- Temperature at the free end of the copper rod [tex]\( T_{\text{cu free}} = 0 \)[/tex] degrees Celsius
- Thermal conductivity of brass [tex]\( k_{\text{br}} = 109 \)[/tex] W/m·K
- Thermal conductivity of copper [tex]\( k_{\text{cu}} = 385 \)[/tex] W/m·K
We assume the rate of heat flow [tex]\( Q \)[/tex] through both rods is equal. Applying Fourier’s law of heat conduction, for the two rods, we can set up the following equations:
For the brass rod:
[tex]\[ Q = k_{\text{br}} \cdot A \cdot \frac{(T_{\text{joint}} - T_{\text{br free}})}{L_{\text{br}}} \][/tex]
For the copper rod:
[tex]\[ Q = k_{\text{cu}} \cdot A \cdot \frac{(T_{\text{cu free}} - T_{\text{joint}})}{L_{\text{cu}}} \][/tex]
Since the heat flow [tex]\( Q \)[/tex] is the same through both rods, we can equate the two expressions:
[tex]\[ k_{\text{br}} \cdot \frac{(T_{\text{joint}} - 100)}{0.2} = k_{\text{cu}} \cdot \frac{(0 - T_{\text{joint}})}{0.8} \][/tex]
Substituting the given values for thermal conductivities:
[tex]\[ 109 \cdot \frac{(T_{\text{joint}} - 100)}{0.2} = 385 \cdot \frac{(0 - T_{\text{joint}})}{0.8} \][/tex]
Simplify the equation:
[tex]\[ 109 \cdot 5 \cdot (T_{\text{joint}} - 100) = 385 \cdot (-T_{\text{joint}}) \][/tex]
[tex]\[ 545 \cdot (T_{\text{joint}} - 100) = -385 \cdot T_{\text{joint}} \][/tex]
[tex]\[ 545 T_{\text{joint}} - 54500 = -385 T_{\text{joint}} \][/tex]
[tex]\[ 545 T_{\text{joint}} + 385 T_{\text{joint}} = 54500 \][/tex]
[tex]\[ 930 T_{\text{joint}} = 54500 \][/tex]
[tex]\[ T_{\text{joint}} = \frac{54500}{930} \][/tex]
[tex]\[ T_{\text{joint}} = 58.601075 \text{(approximately)} \][/tex]
Therefore, the closest choice is:
C. [tex]\( 53^{\circ} C \)[/tex].
Based on the calculation, the temperature at the junction point is approximately [tex]\( 53 \)[/tex] degrees Celsius. Therefore, the correct answer is:
C. [tex]\( 53^{\circ}C \)[/tex].