Answer :

Certainly! To find the value of the logarithmic expression [tex]\(\log_4 32 - \log_4 2\)[/tex], we will use the properties of logarithms. Specifically, we can use the logarithmic property which states that [tex]\(\log_b(x) - \log_b(y) = \log_b\left(\frac{x}{y}\right)\)[/tex].

Given the expression:

[tex]\[ \log_4 32 - \log_4 2 \][/tex]

Step 1: Apply the logarithmic difference property:

[tex]\[ \log_4 32 - \log_4 2 = \log_4 \left(\frac{32}{2}\right) \][/tex]

Step 2: Simplify the fraction inside the logarithm:

[tex]\[ \frac{32}{2} = 16 \][/tex]

So the expression becomes:

[tex]\[ \log_4 16 \][/tex]

Step 3: Evaluate [tex]\(\log_4 16\)[/tex]:

Recall that [tex]\(16\)[/tex] can be written as a power of [tex]\(4\)[/tex]:

[tex]\[ 16 = 4^2 \][/tex]

Thus:

[tex]\[ \log_4 16 = \log_4 (4^2) \][/tex]

Step 4: Use the property of logarithms [tex]\(\log_b (a^c) = c \cdot \log_b a\)[/tex]:

[tex]\[ \log_4 (4^2) = 2 \cdot \log_4 4 \][/tex]

Step 5: Recognize that [tex]\(\log_4 4 = 1\)[/tex] because any number [tex]\(a\)[/tex] raised to the power of [tex]\(1\)[/tex] is [tex]\(a\)[/tex]:

[tex]\[ 2 \cdot \log_4 4 = 2 \cdot 1 = 2 \][/tex]

Therefore:

[tex]\[ \log_4 32 - \log_4 2 = 2 \][/tex]

So, the exact value of the logarithmic expression is:

[tex]\[ \boxed{2} \][/tex]