What is the product?

[tex]\[ \left(y^2 + 3y + 7\right)\left(8y^2 + y + 1\right) \][/tex]

A. [tex]\(8y^4 + 24y^3 + 60y^2 + 10y + 7\)[/tex]

B. [tex]\(8y^4 + 25y^3 + 4y^2 + 10y + 7\)[/tex]

C. [tex]\(8y^4 + 25y^3 + 60y^2 + 7y + 7\)[/tex]

D. [tex]\(8y^4 + 25y^3 + 60y^2 + 10y + 7\)[/tex]



Answer :

To find the product of the two given expressions [tex]\(y^2 + 3y + 7\)[/tex] and [tex]\(8y^2 + y + 1\)[/tex], we need to use polynomial multiplication. The detailed, step-by-step solution is as follows:

1. Write down the two polynomials:
[tex]\[ (y^2 + 3y + 7) \quad \text{and} \quad (8y^2 + y + 1) \][/tex]

2. Multiply each term in the first polynomial by each term in the second polynomial. The terms should be:

[tex]\[ y^2 \cdot 8y^2 = 8y^4 \][/tex]
[tex]\[ y^2 \cdot y = y^3 \][/tex]
[tex]\[ y^2 \cdot 1 = y^2 \][/tex]
[tex]\[ 3y \cdot 8y^2 = 24y^3 \][/tex]
[tex]\[ 3y \cdot y = 3y^2 \][/tex]
[tex]\[ 3y \cdot 1 = 3y \][/tex]
[tex]\[ 7 \cdot 8y^2 = 56y^2 \][/tex]
[tex]\[ 7 \cdot y = 7y \][/tex]
[tex]\[ 7 \cdot 1 = 7 \][/tex]

3. Now add together all like terms, grouping them by the power of [tex]\(y\)[/tex]:

[tex]\[ 8y^4 \][/tex]
[tex]\[ y^3 + 24y^3 = 25y^3 \][/tex]
[tex]\[ y^2 + 3y^2 + 56y^2 = 60y^2 \][/tex]
[tex]\[ 3y + 7y = 10y \][/tex]
[tex]\[ 7 \][/tex]

4. Combine these like terms to form the final product:

[tex]\[ 8y^4 + 25y^3 + 60y^2 + 10y + 7 \][/tex]

Thus, the product of the polynomials [tex]\(y^2 + 3y + 7\)[/tex] and [tex]\(8y^2 + y + 1\)[/tex] is:
[tex]\[ 8y^4 + 25y^3 + 60y^2 + 10y + 7 \][/tex]

This matches with one of the options provided, specifically:
[tex]\[ 8y^4 + 25y^3 + 60y^2 + 10y + 7 \][/tex]