Which of these is equivalent to [tex]$9^2+4^2$[/tex]?

A. [tex]$(9 \times 9)+(4 \times 4)$[/tex]

B. [tex][tex]$(9+9)+(4+4)$[/tex][/tex]

C. [tex]$(9+4)^2$[/tex]

D. [tex]$(9 \times 4)^2$[/tex]



Answer :

To determine which of the given expressions is equivalent to [tex]\(9^2 + 4^2\)[/tex], let's evaluate each of them step-by-step.

First, let's calculate [tex]\(9^2 + 4^2\)[/tex]:
[tex]\[ 9^2 = 81 \quad \text{and} \quad 4^2 = 16 \][/tex]
[tex]\[ 9^2 + 4^2 = 81 + 16 = 97 \][/tex]

Now, we need to evaluate each of the given expressions to see which one matches 97.

1. [tex]\((9 \times 9) + (4 \times 4)\)[/tex]:
[tex]\[ 9 \times 9 = 81 \quad \text{and} \quad 4 \times 4 = 16 \][/tex]
[tex]\[ (9 \times 9) + (4 \times 4) = 81 + 16 = 97 \][/tex]

2. [tex]\((9 + 9) + (4 + 4)\)[/tex]:
[tex]\[ 9 + 9 = 18 \quad \text{and} \quad 4 + 4 = 8 \][/tex]
[tex]\[ (9 + 9) + (4 + 4) = 18 + 8 = 26 \][/tex]

3. [tex]\((9 + 4)^2\)[/tex]:
[tex]\[ 9 + 4 = 13 \][/tex]
[tex]\[ (9 + 4)^2 = 13^2 = 169 \][/tex]

4. [tex]\((9 \times 4)^2\)[/tex]:
[tex]\[ 9 \times 4 = 36 \][/tex]
[tex]\[ (9 \times 4)^2 = 36^2 = 1296 \][/tex]

Comparing all these results with [tex]\(97\)[/tex], we see that the expression [tex]\((9 \times 9) + (4 \times 4)\)[/tex] is equivalent to [tex]\(9^2 + 4^2\)[/tex].

Thus, the correct choice is:
[tex]\((9 \times 9) + (4 \times 4)\)[/tex].