Answer :
Let's evaluate each of the expressions step-by-step:
1. Evaluate [tex]\(5^0 + 2^1\)[/tex]:
[tex]\[ 5^0 = 1 \quad \text{(Any non-zero number to the power of zero is 1)} \][/tex]
[tex]\[ 2^1 = 2 \quad \text{(Any number to the power of one is itself)} \][/tex]
Hence:
[tex]\[ 5^0 + 2^1 = 1 + 2 = 3 \][/tex]
2. Evaluate [tex]\(2^0 + 1^1\)[/tex]:
[tex]\[ 2^0 = 1 \quad \text{(Any non-zero number to the power of zero is 1)} \][/tex]
[tex]\[ 1^1 = 1 \quad \text{(Any number to the power of one is itself)} \][/tex]
Hence:
[tex]\[ 2^0 + 1^1 = 1 + 1 = 2 \][/tex]
3. Evaluate [tex]\(2^0 + 2^1\)[/tex]:
[tex]\[ 2^0 = 1 \quad \text{(Any non-zero number to the power of zero is 1)} \][/tex]
[tex]\[ 2^1 = 2 \quad \text{(Any number to the power of one is itself)} \][/tex]
Hence:
[tex]\[ 2^0 + 2^1 = 1 + 2 = 3 \][/tex]
4. Evaluate [tex]\(6^0 - 3^0\)[/tex]:
[tex]\[ 6^0 = 1 \quad \text{(Any non-zero number to the power of zero is 1)} \][/tex]
[tex]\[ 3^0 = 1 \quad \text{(Any non-zero number to the power of zero is 1)} \][/tex]
Hence:
[tex]\[ 6^0 - 3^0 = 1 - 1 = 0 \][/tex]
5. Evaluate [tex]\(6^0 - 6^1\)[/tex]:
[tex]\[ 6^0 = 1 \quad \text{(Any non-zero number to the power of zero is 1)} \][/tex]
[tex]\[ 6^1 = 6 \quad \text{(Any number to the power of one is itself)} \][/tex]
Hence:
[tex]\[ 6^0 - 6^1 = 1 - 6 = -5 \][/tex]
Therefore, comparing all the values:
- [tex]\(5^0 + 2^1 = 3\)[/tex]
- [tex]\(2^0 + 1^1 = 2\)[/tex]
- [tex]\(2^0 + 2^1 = 3\)[/tex]
- [tex]\(6^0 - 3^0 = 0\)[/tex]
- [tex]\(6^0 - 6^1 = -5\)[/tex]
The expression that is equal to [tex]\(5^0 + 2^1\)[/tex] is [tex]\(2^0 + 2^1\)[/tex].
1. Evaluate [tex]\(5^0 + 2^1\)[/tex]:
[tex]\[ 5^0 = 1 \quad \text{(Any non-zero number to the power of zero is 1)} \][/tex]
[tex]\[ 2^1 = 2 \quad \text{(Any number to the power of one is itself)} \][/tex]
Hence:
[tex]\[ 5^0 + 2^1 = 1 + 2 = 3 \][/tex]
2. Evaluate [tex]\(2^0 + 1^1\)[/tex]:
[tex]\[ 2^0 = 1 \quad \text{(Any non-zero number to the power of zero is 1)} \][/tex]
[tex]\[ 1^1 = 1 \quad \text{(Any number to the power of one is itself)} \][/tex]
Hence:
[tex]\[ 2^0 + 1^1 = 1 + 1 = 2 \][/tex]
3. Evaluate [tex]\(2^0 + 2^1\)[/tex]:
[tex]\[ 2^0 = 1 \quad \text{(Any non-zero number to the power of zero is 1)} \][/tex]
[tex]\[ 2^1 = 2 \quad \text{(Any number to the power of one is itself)} \][/tex]
Hence:
[tex]\[ 2^0 + 2^1 = 1 + 2 = 3 \][/tex]
4. Evaluate [tex]\(6^0 - 3^0\)[/tex]:
[tex]\[ 6^0 = 1 \quad \text{(Any non-zero number to the power of zero is 1)} \][/tex]
[tex]\[ 3^0 = 1 \quad \text{(Any non-zero number to the power of zero is 1)} \][/tex]
Hence:
[tex]\[ 6^0 - 3^0 = 1 - 1 = 0 \][/tex]
5. Evaluate [tex]\(6^0 - 6^1\)[/tex]:
[tex]\[ 6^0 = 1 \quad \text{(Any non-zero number to the power of zero is 1)} \][/tex]
[tex]\[ 6^1 = 6 \quad \text{(Any number to the power of one is itself)} \][/tex]
Hence:
[tex]\[ 6^0 - 6^1 = 1 - 6 = -5 \][/tex]
Therefore, comparing all the values:
- [tex]\(5^0 + 2^1 = 3\)[/tex]
- [tex]\(2^0 + 1^1 = 2\)[/tex]
- [tex]\(2^0 + 2^1 = 3\)[/tex]
- [tex]\(6^0 - 3^0 = 0\)[/tex]
- [tex]\(6^0 - 6^1 = -5\)[/tex]
The expression that is equal to [tex]\(5^0 + 2^1\)[/tex] is [tex]\(2^0 + 2^1\)[/tex].