Answer :

Let's solve it step by step:

### Part (i)

We need to evaluate the expression [tex]\(-\frac{2}{3} x^2 + 5x - 2\)[/tex] for [tex]\( x = -3 \)[/tex].

1. Substitute [tex]\( x = -3 \)[/tex] into the expression:
[tex]\[ -\frac{2}{3}(-3)^2 + 5(-3) - 2 \][/tex]

2. Calculate [tex]\((-3)^2\)[/tex]:
[tex]\[ (-3)^2 = 9 \][/tex]

3. Substitute [tex]\( 9 \)[/tex] back into the expression:
[tex]\[ -\frac{2}{3} \cdot 9 + 5(-3) - 2 \][/tex]

4. Calculate [tex]\(-\frac{2}{3} \cdot 9\)[/tex]:
[tex]\[ -\frac{2}{3} \cdot 9 = -6 \][/tex]

5. Calculate [tex]\( 5(-3) \)[/tex]:
[tex]\[ 5 \cdot -3 = -15 \][/tex]

6. Substitute these values back into the expression:
[tex]\[ -6 - 15 - 2 \][/tex]

7. Simplify the expression:
[tex]\[ -6 - 15 = -21 \][/tex]
[tex]\[ -21 - 2 = -23 \][/tex]

So, the value for part (i) is:
[tex]\[ -23.0 \][/tex]

### Part (ii)

We need to evaluate the expression [tex]\(\frac{3a + 2b - 5}{a + b}\)[/tex] for [tex]\(a = 2\)[/tex] and [tex]\(b = -1\)[/tex].

1. Substitute [tex]\( a = 2 \)[/tex] and [tex]\( b = -1 \)[/tex] into the expression:
[tex]\[ \frac{3 \cdot 2 + 2 \cdot (-1) - 5}{2 + (-1)} \][/tex]

2. Calculate [tex]\( 3 \cdot 2 \)[/tex]:
[tex]\[ 3 \cdot 2 = 6 \][/tex]

3. Calculate [tex]\( 2 \cdot (-1) \)[/tex]:
[tex]\[ 2 \cdot (-1) = -2 \][/tex]

4. Substitute these values back into the expression:
[tex]\[ \frac{6 - 2 - 5}{2 - 1} \][/tex]

5. Simplify the numerator:
[tex]\[ 6 - 2 = 4 \][/tex]
[tex]\[ 4 - 5 = -1 \][/tex]

6. Simplify the denominator:
[tex]\[ 2 - 1 = 1 \][/tex]

7. Divide the numerator by the denominator:
[tex]\[ \frac{-1}{1} = -1 \][/tex]

So, the value for part (ii) is:
[tex]\[ -1.0 \][/tex]

Therefore, the final answers are:
- (i) [tex]\(-23.0\)[/tex]
- (ii) [tex]\(-1.0\)[/tex]