Para resolver la expresión [tex]\(\frac{x^2 + y^2}{z^2} - w^2\)[/tex] con los valores dados [tex]\(x = 3\)[/tex], [tex]\(y = -2\)[/tex], [tex]\(z = 1\)[/tex] y [tex]\(w = -2\)[/tex], seguimos estos pasos detalladamente:
1. Calcular [tex]\(x^2\)[/tex]:
[tex]\[
x = 3 \implies x^2 = 3^2 = 9
\][/tex]
2. Calcular [tex]\(y^2\)[/tex]:
[tex]\[
y = -2 \implies y^2 = (-2)^2 = 4
\][/tex]
3. Calcular [tex]\(z^2\)[/tex]:
[tex]\[
z = 1 \implies z^2 = 1^2 = 1
\][/tex]
4. Calcular [tex]\(w^2\)[/tex]:
[tex]\[
w = -2 \implies w^2 = (-2)^2 = 4
\][/tex]
5. Calcular el numerador [tex]\(x^2 + y^2\)[/tex]:
[tex]\[
x^2 + y^2 = 9 + 4 = 13
\][/tex]
6. Calcular [tex]\(\frac{x^2 + y^2}{z^2}\)[/tex]:
[tex]\[
\frac{13}{1} = 13
\][/tex]
7. Calcular la expresión completa [tex]\(\frac{x^2 + y^2}{z^2} - w^2\)[/tex]:
[tex]\[
13 - 4 = 9
\][/tex]
Así, el valor de la expresión [tex]\(\frac{x^2 + y^2}{z^2} - w^2\)[/tex] es:
[tex]\[
\boxed{9}
\][/tex]