Answered

El valor de la expresión [tex]\frac{x^2 + y^2}{z^2} - w^2[/tex] cuando [tex]x = 3[/tex], [tex]y = -2[/tex], [tex]z = 1[/tex], y [tex]w = -2[/tex] es:



Answer :

Para resolver la expresión [tex]\(\frac{x^2 + y^2}{z^2} - w^2\)[/tex] con los valores dados [tex]\(x = 3\)[/tex], [tex]\(y = -2\)[/tex], [tex]\(z = 1\)[/tex] y [tex]\(w = -2\)[/tex], seguimos estos pasos detalladamente:

1. Calcular [tex]\(x^2\)[/tex]:
[tex]\[ x = 3 \implies x^2 = 3^2 = 9 \][/tex]

2. Calcular [tex]\(y^2\)[/tex]:
[tex]\[ y = -2 \implies y^2 = (-2)^2 = 4 \][/tex]

3. Calcular [tex]\(z^2\)[/tex]:
[tex]\[ z = 1 \implies z^2 = 1^2 = 1 \][/tex]

4. Calcular [tex]\(w^2\)[/tex]:
[tex]\[ w = -2 \implies w^2 = (-2)^2 = 4 \][/tex]

5. Calcular el numerador [tex]\(x^2 + y^2\)[/tex]:
[tex]\[ x^2 + y^2 = 9 + 4 = 13 \][/tex]

6. Calcular [tex]\(\frac{x^2 + y^2}{z^2}\)[/tex]:
[tex]\[ \frac{13}{1} = 13 \][/tex]

7. Calcular la expresión completa [tex]\(\frac{x^2 + y^2}{z^2} - w^2\)[/tex]:
[tex]\[ 13 - 4 = 9 \][/tex]

Así, el valor de la expresión [tex]\(\frac{x^2 + y^2}{z^2} - w^2\)[/tex] es:
[tex]\[ \boxed{9} \][/tex]