What is the equation of a circle with center [tex]$(-2, 3)$[/tex] and radius 4?

A. [tex]$(x + 2)^2 + (y - 3)^2 = 4$[/tex]

B. [tex][tex]$(x - 2)^2 + (y + 3)^2 = 16$[/tex][/tex]

C. [tex]$(x + 2)^2 - (y - 3)^2 = 16$[/tex]

D. [tex]$(x + 2)^2 + (y - 3)^2 = 16$[/tex]



Answer :

To determine the equation of a circle with a given center and radius, we use the standard form of the equation of a circle.

The general form of the equation of a circle with center [tex]\((h, k)\)[/tex] and radius [tex]\(r\)[/tex] is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]

Given that the center of the circle is [tex]\((-2, 3)\)[/tex] and the radius is [tex]\(4\)[/tex], we substitute these values into the equation.

The values are:
[tex]\[ h = -2, \quad k = 3, \quad r = 4 \][/tex]

Substituting [tex]\(h\)[/tex], [tex]\(k\)[/tex], and [tex]\(r\)[/tex] into the general form:
[tex]\[ (x - (-2))^2 + (y - 3)^2 = 4^2 \][/tex]

Simplifying inside the parentheses:
[tex]\[ (x + 2)^2 + (y - 3)^2 = 4^2 \][/tex]

We know that [tex]\(4^2 = 16\)[/tex], so the equation becomes:
[tex]\[ (x + 2)^2 + (y - 3)^2 = 16 \][/tex]

Thus, the correct equation representing the circle is:
[tex]\[ (x + 2)^2 + (y - 3)^2 = 16 \][/tex]

Among the given options, the equation that matches this form is:
[tex]\[ \text{D. } (x + 2)^2 + (y - 3)^2 = 16 \][/tex]

Therefore, the correct answer is:

[tex]\[ \boxed{D} \][/tex]